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Overview,of,Authen'ca'on,

◦ User%authen+ca+on%is$the$process$of$verifying$the$validity$of$a$
claimed$user.$
◦ Knowledge9Based$Authen<cators$(Passwords)$
◦ Object9Based$Authen<cators$(Tokens/keys)$
◦ ID9Based$Authen<cators$(Biometric)$

◦ Machine%authen+ca+on%is$the$process$of$verifying$the$validity$of$a$
machine$which$is$aHemp<ng$to$access$or$provide$a$resource.$$
◦ Asymmetric$Cryptography$(SSL/TLS)$
◦ Mutual$authen<ca<on$(Kerberos)$



Single,Sign,On

◦ Allow$a$user$who$has$been$authen<cated$by$one$machine$
to$have$access$to$other$machines$without$further$user$
authen<ca<on.$$
◦ Common$use$case$for$machine$authen<ca<on$
◦ SSH$keys$
◦ Sign$in$with$Google$
◦ Kerberos$



Client$User$

End$Server$2$

End$Server$

Generic,SSO,
Architecture


Password$ Hash$



Infected$Server$Intermediate$
Server$Admin$

Intermediate$
Server$

AHacker$ Vic<m$$

1

2

4

5

Pass,the,hash,

A$common$aHack$against$single$sign$
on$architectures.$$

•  Assumes$aHacker$has$gained$
admin$access$to$a$machine$in$the$
network$

Vic<m$Admin$
3



Kerberos

MicrosoW$Windows$single$sign$on$login$
service$



Pass,the,'cket

A$variant$of$pass9the9hash$for$
Kerberos$



PassItheIhash,tradi'onal,defenses 


◦ Grant$lowest$necessary$privileges$to$users$
◦ Minimize$admin$log9ins$to$less$secure$machines$
◦ Tradi<onal$host$and$network$intrusion$detec<on$monitoring$
◦ Monitor$for$newly$created$accounts$
◦  AV$process$monitoring/automa<c$restart$
◦  Anomaly$monitoring$(e.x.$watch$for$systems$making$connec<ons$to$many$hosts$in$a$short$
<me)$



PassItheI'cket,a-ack,detec'on,
algorithm 


◦ Build$a$graph$G(V,E):$
◦  V={IP$addresses$in$network$U$IP$addresses$accessing$network}$
◦  E={(u,v)|$u$in$V,$v$in$V,$the$web$log$contains$an$event$where$source=u,$dest=v}$

◦ Sparsify$the$graph$
◦  Random$sampling$or$adjacency$matrix$sparsifica<on$

◦ Paths$in$the$graph$from$an$external$IP$to$a$server$containing$sensi<ve$
informa<on$are$poten<al$pass9the9hash$aHacks$



PassItheI'cket,a-ack,risk,level,
evalua'on

◦ Build$a$graph$G(V,E):$
◦  V={IP$addresses$in$network$U$IP$addresses$accessing$network}$
◦  E={(u,v)|$u$in$V,$v$in$V,$there$exists$a$user$X$who$has$logged$into$u$and$is$an$admin$on$v}$
◦  Approximate$E$by$looking$for$events$in$the$web$log$that$indicate$the$desired$rela<onship$

◦ Sparsify$the$graph$
◦  Random$sampling$or$adjacency$matrix$sparsifica<on$

◦ Paths$in$the$graph$from$an$external$IP$to$a$server$containing$sensi<ve$
informa<on$are$paths$at$risk$of$pass9the9hash$aHacks$



Summary

◦ Authen<ca<on$is$at$the$crux$of$computer$security$
◦ Authen<ca<on$is$a$huge$topic,$covering$both$user$and$machine$
authen<ca<on$

◦ SSO$is$a$convenient$and$effec<ve$way$to$save$users$and$admins$
<me,$but$introduces$a$single$point$of$failure$

◦ Admins$have$long$tried$to$increase$the$security$of$SSO$systems$by$
enforcing$best$prac<ces,$to$limited$success$

◦ Researchers$are$now$exploring$data$mining$techniques$to$detect$
and$prevent$common$aHacks$against$SSO$systems$



Ques'ons?




Detecting(
Compromised(

Accounts2
Curran Kaushik, Alex Zamoshchin 



Social(Network(Issues2
•  Spam, phishing, and malware are real threats on 

social networking sites 

•  Large-scale malware campaigns have been 
carried out over social networks 

•  83% of social network users received at least one 
unwanted message each year 













Compromised(Accounts2
•  Accounts of real users that have been 

compromised 
o  Not fake accounts 

•  For each user, we associate a behavior profile 
o  A message that appears to be very different from a user’s typical 

behavior might indicate a compromise. 

•  Approach 
1.  Check for a set of similar messages 
2.  Require that a significant subset of these messages violate the behavioral 

profiles of their senders 

 



Behavior(Profiles2
•  List of all messages that the user has posted on the 

social network, in chronological order 
o  Need a minimum number S"="10"messages 

•  Features 
o  Time (hour of day) 
o  Message Source 
o  Message Text (Language) 
o  *Message Topic 
o  *Links in Messages 
o  *Direct User Information 
o  Proximity 

* = optional 







False(Positives2



False(Negatives2



Limitations2
•  Impossible if not implemented by the social 

networks themselves 

•  Attackers can post messages that align with the 
sender’s behavior 

•  Attackers can post messages that evade similarity 
measures 
o  For example, an attacker can use dynamic URLs 

•  In response, the system could take into consideration landing page 



Sybil(Detection2
•  Simply detecting fake accounts is an equally hard 

problem 

•  Due to high false positive rate, manual inspection is 
needed 
o  Can be used to decide when to present the users with CAPTCHAs 

•  ML performs poorly 
o  Able to detect only 20% of fakes deployed, and almost all the detected 

accounts were flagged by users 



•  Undirected Graph, G"="(V,E)

Model2



Propagating(Trust2

Terminate(after(log(n)(operations2





Results2



Limitations2
•  Multiple communities 

•  Sophisticated attackers may obtain knowledge of 
seeds and established “attack edges” close to the 
seed nodes 



Resources2
•  Egele, Manuel, et. al, “COMPA: Detecting 

Compromised Accounts on Social Networks” 

•  Cao, Qiang, et. al, “Aiding the Detection of Fake 
Accounts in Large Scale Social Online Services” 

•  Harris Interactive Public Relations Research, “A 
Study of Social Networks Scams,” 2008. 



data mining 

security 
WITH 





Normalization 
Anomaly detection 

 

“Professor Plum did it in 
the Study with the 50,000 
machine botnet” 



What about the 
attackers? 









Think more… analog. 





Derrick Liu + Daniel Chiu 

LOW-tech 
DATA MINING 

Data mining for fun and profit 



LOW-tech 
DATA MINING 

War dialing 

War driving 

Search engines  



War dialing 



What is war dialing? 



650$555$0000%

650$555$0001%

650$555$0002%

650$555$0003%

650$555$0004%

650$555$0005%

650$555$0006%

650$555$0007%

650$555$0008%

650$555$0009%

650$555$0010%

650$555$0011%

650$555$0012%

650$555$0013%

650$555$0014%

650$555$0015%

650$555$0016%

650$555$0017%

650$555$0018%

650$555$0019%

%

650$555$0000%

650$555$2361%

650$555$2362%

650$555$2363%

650$555$2364%

650$555$2365%

650$555$2366%

650$555$2367%

650$555$2368%Sounds like a modem! 

Flag it for later  
human reference 



War dialing can reveal 
significant lapses in security. 



Many sensitive systems are still connected to the internet via dial-up 

Industrial control systems 



ATM demo video 







LOW-tech 
DATA MINING 

War dialing 

War driving 

Search engines  



War driving 



In a nutshell 



WiFi security is getting better. 



With 
“secret” and “secure” networking 

and 
“patented, proprietary encryption” 

There’s another wireless target 
out there. 



Infrastructure! 



Credit where it’s due. 

The tech is (sometimes) really old. 

Wireless is really cheap compared to wires / people. 

The use cases didn’t have a good standard to follow. 

Product of evolution. 

Infrastructure is really expensive. 



Lots of problems, though 
Everyone has physical access to these things 

Everyone uses different tech and different “standards” 

Lack of security mindset 

Needs to survive for a very long time, slow updates 



An example 

$40 $0 

+ 



LOW-tech 
DATA MINING 

War dialing 

War driving 

Search engines  



Search engines are really 
good at finding things. 



Unsecured surveillance cameras 



Exposed server info 



Exposed server info 



Some search engines are tailor 
made for finding vulnerabilities. 



SHODAN 





How do we fix this stuff? 



We’re getting better at it 
Adopt better disclosure practices for new vulnerabilities 

Regular audits and pen-testing, especially for non-traditional attack vectors 

Companies need to prioritize secure designs and be more transparent 

Need to update faster in order to keep up with attackers 

Physical security is no longer enough! 

Use robots.txt 



Derrick Liu + Daniel Chiu 

THANKS 





G
yrophone:R

ecognizing
Speech

From
G

yroscope
Signals

Yan
M

ichalevsky
D

an
B

oneh
C

om
puter

Science
D

epartm
ent

Stanford
U

niversity

G
abiN

akibly
N

ationalResearch
&

Sim
ulation

C
enter

RafaelLtd.

A
bstract

W
e

show
that

the
M

EM
S

gyroscopes
found

on
m

od-
ern

sm
art

phones
are

sufficiently
sensitive

to
m

easure
acoustic

signals
in

the
vicinity

of
the

phone.
The

re-
sulting

signals
contain

only
very

low
-frequency

infor-
m

ation
(<

200H
z).

N
evertheless

w
e

show
,using

signal
processing

and
m

achine
learning,thatthisinform

ation
is

sufficientto
identify

speakerinform
ation

and
even

parse
speech.

Since
iO

S
and

A
ndroid

require
no

specialper-
m

issions
to

access
the

gyro,our
results

show
thatapps

and
active

w
eb

content
that

cannot
access

the
m

icro-
phone

can
neverthelesseavesdrop

on
speech

in
the

vicin-
ity

ofthe
phone.

1
Introduction

M
odern

sm
artphonesand

m
obile

deviceshave
m

any
sen-

sors
that

enable
rich

user
experience.

B
eing

generally
putto

good
use,they

can
som

etim
es

unintentionally
ex-

pose
inform

ation
the

userdoes
notw

antto
share.W

hile
the

privacy
risks

associated
w

ith
som

e
sensors

like
a

m
i-

crophone
(eavesdropping),cam

era
orG

PS
(tracking)are

obviousand
w

ellunderstood,som
e

ofthe
risksrem

ained
underthe

radarforusers
and

application
developers.

In
particular,

access
to

m
otion

sensors
such

as
gyroscope

and
accelerom

eter
is

unm
itigated

by
m

obile
operating

system
s.N

am
ely,every

application
installed

on
a

phone
and

every
w

eb
page

brow
sed

over
it

can
m

easure
and

record
these

sensors
w

ithoutthe
userbeing

aw
are

ofit.
R

ecently,a
few

research
w

orkspointed
outunintended

inform
ation

leaks
using

m
otion

sensors.In
R

ef.[34]the
authorssuggesta

m
ethod

foruseridentification
from

gait
patternsobtained

from
a

m
obile

device’saccelerom
eters.

The
feasibility

of
keystroke

inference
from

nearby
key-

boards
using

accelerom
eters

has
been

show
n

in
[35].

In
[21],the

authorsdem
onstrate

the
possibility

ofkeystroke
inference

on
a

m
obile

device
using

accelerom
eters

and
m

ention
the

potentialofusing
gyroscope

m
easurem

ents
asw

ell,w
hile

anotherstudy
[19]pointsto

the
benefitsof

exploiting
the

gyroscope.
A

ll
of

the
above

w
ork

focused
on

exploitation
of

m
otion

events
obtained

from
the

sensors,
utilizing

the
expected

kinetic
response

of
accelerom

eters
and

gyro-
scopes.

In
this

paperw
e

reveala
new

w
ay

to
extractin-

form
ation

from
gyroscope

m
easurem

ents.W
e

show
that

gyroscopes
are

sufficiently
sensitive

to
m

easure
acous-

tic
vibrations.This

leads
to

the
possibility

ofrecovering
speech

from
gyroscope

readings,nam
ely

using
the

gyro-
scope

asa
crude

m
icrophone.W

e
show

thatthe
sam

pling
rate

ofthe
gyroscope

isup
to

200
H

z
w

hich
coverssom

e
ofthe

audible
range.This

raises
the

possibility
ofeaves-

dropping
on

speech
in

the
vicinity

of
a

phone
w

ithout
access

to
the

realm
icrophone.

A
s

the
sam

pling
rate

of
the

gyroscope
is

lim
ited,one

cannot
fully

reconstruct
a

com
prehensible

speech
from

m
easurem

ents
of

a
single

gyroscope.
Therefore,w

e
re-

sort
to

autom
atic

speech
recognition.

W
e

extract
fea-

tures
from

the
gyroscope

m
easurem

ents
using

various
signalprocessing

m
ethodsand

train
m

achine
learning

al-
gorithm

sforrecognition.W
e

achieve
about50%

success
rate

forspeakeridentification
from

a
setof10

speakers.
W

e
also

show
thatw

hile
lim

iting
ourselvesto

a
sm

allvo-
cabulary

consisting
solely

ofdigitpronunciations(”one”,
”tw

o”,”three”,...)
and

achieve
speech

recognition
suc-

cess
rate

of
65%

for
the

speaker
dependentcase

and
up

to
26%

recognition
rate

forthe
speakerindependentcase.

Thiscapability
allow

san
attackerto

substantially
leak

in-
form

ation
aboutnum

bersspoken
overornextto

a
phone

(i.e.creditcard
num

bers,socialsecurity
num

bersand
the

like).
W

e
also

consider
the

setting
of

a
conference

room
w

here
tw

o
or

m
ore

people
are

carrying
sm

artphones
or

tablets.
This

setting
allow

s
an

attacker
to

gain
sim

ulta-
neous

m
easurem

ents
ofspeech

from
severalgyroscopes.

W
e

show
thatby

com
bining

the
signalsfrom

tw
o

orm
ore

phonesw
e

can
increase

the
effective

sam
pling

rate
ofthe

acoustic
signalw

hile
achieving

betterspeech
recognition

rates.
In

our
experim

ents
w

e
achieved

77%
successful

recognition
rate

in
the

speakerdependentcase
based

on
the

digits
vocabulary.

The
paper

structure
is

as
follow

s:
in

Section
2

w
e

provide
a

brief
description

of
how

a
M

EM
S

gyroscope
w

orks
and

present
initial

investigation
of

its
properties

as
a

m
icrophone.

In
Section

3
w

e
discuss

speech
anal-

ysis
and

describe
ouralgorithm

s
forspeakerand

speech
recognition.In

Section
4

w
e

suggesta
m

ethod
foraudio

signalrecovery
using

sam
ples

from
m

ultiple
devices.In

Section
5

w
e

discuss
m

ore
directions

forexploitation
of

gyroscopes’acoustic
sensitivity.Finally,in

Section
6

w
e

discussm
itigation

m
easuresofthisunexpected

threat.In



particular,w
e

argue
thatrestricting

the
sam

pling
rate

is
an

effective
and

backw
ards

com
patible

solution.

2
G

yroscope
asa

m
icrophone

In
this

section
w

e
explain

how
M

EM
S

gyroscopes
oper-

ate
and

presentan
initialinvestigation

of
their

suscepti-
bility

to
acoustic

signals.

2.1
H

ow
doesa

M
E

M
S

gyroscope
w

ork?

Standard-size
(non-M

EM
S)gyroscopesare

usually
com

-
posed

of
a

spinning
w

heelon
an

axle
thatis

free
to

as-
sum

e
any

orientation.B
ased

on
the

principlesofangular
m

om
entum

the
w

heel
resists

to
changes

in
orientation,

thereby
allow

ing
to

m
easure

those
changes.

N
onethe-

less,allM
EM

S
gyrostake

advantage
ofa

differentphys-
ical

phenom
enon

–
the

C
oriolis

force.
It

is
a

fictitious
force

(d’A
lem

bertforce)thatappears
to

acton
an

object
w

hile
view

ing
itfrom

a
rotating

reference
fram

e
(m

uch
like

the
centrifugalforce).

The
C

oriolis
force

acts
in

a
direction

perpendicular
to

the
rotation

axis
of

the
refer-

ence
fram

e
and

to
the

velocity
ofthe

view
ed

object.The
C

oriolisforce
iscalculated

by
F
=

2m
~v⇥

~w
w

here
m

and
v

denote
the

object’sm
assand

velocity,respectively,and
w

denotes
the

angularrate
ofthe

reference
fram

e.
G

enerally
speaking,

M
EM

S
gyros

m
easure

their
an-

gular
rate

(w
)

by
sensing

the
m

agnitude
of

the
C

ori-
olis

force
acting

on
a

m
oving

proof
m

ass
w

ithin
the

gyro.U
sually

the
m

oving
proofm

assconstantly
vibrates

w
ithin

the
gyro.

Its
vibration

frequency
is

also
called

the
resonance

frequency
ofthe

gyro.
The

C
oriolis

force
is

sensed
by

m
easuring

its
resulting

vibration,w
hich

is
orthogonal

to
the

prim
ary

vibration
m

ovem
ent.

Som
e

gyroscope
designs

use
a

single
m

ass
to

m
easure

the
an-

gular
rate

of
different

axes,
w

hile
others

use
m

ultiple
m

asses.
Such

a
generaldesign

is
com

m
only

called
vi-

brating
structure

gyroscope.
There

are
tw

o
prim

ary
vendors

ofM
EM

S
gyroscopes

for
m

obile
devices:

STM
icroelectronics

[15]
and

In-
venSense

[7].
A

ccording
to

a
recentsurvey

[18]STM
i-

croelectronics
dom

inates
w

ith
80%

m
arketshare.

Tear-
dow

n
analyses

show
that

this
vendor’s

gyros
can

be
found

in
A

pple’siPhonesand
iPads[17,8]and

also
in

the
latestgenerations

of
Sam

sung’s
G

alaxy-line
phones

[5,
6].

The
second

vendor,InvenSense,has
the

rem
aining

20%
m

arketshare
[18].

InvenSense
gyros

can
be

found
in

G
oogle’s

latestgenerations
ofN

exus-line
phones

and
tablets

[14,13]
as

w
ellas

in
G

alaxy-line
tablets

[4,3].
These

tw
o

vendors’gyroscopes
have

differentm
echani-

caldesigns,butare
both

noticeably
influenced

by
acous-

tic
noise.

2.1.1
ST

M
icroelectronics

The
design

ofSTM
icroelectronics

3-axis
gyros

is
based

on
a

single
driving

(vibrating)m
ass

(show
n

in
Figure

1).
The

driving
m

ass
consists

of4
parts

M
1 ,M

2 ,M
3

and
M

4
(Figure

1(b)).
They

m
ove

inw
ard

and
outw

ard
sim

ulta-
neously

ata
certain

frequency
1

in
the

horizontalplane.
A

sshow
n

in
Figure

1(b),w
hen

an
angularrate

isapplied
on

the
Z-axis,due

to
the

C
oriolis

effect,M
2

and
M

4
w

ill
m

ove
in

the
sam

e
horizontalplane

in
opposite

directions
asshow

n
by

the
red

and
yellow

arrow
s.W

hen
an

angular
rate

is
applied

on
the

X
-axis,then

M
1

and
M

3
w

illm
ove

in
opposite

directions
up

and
dow

n
outofthe

plane
due

to
the

C
oriolis

effect.
W

hen
an

angular
rate

is
applied

to
the

Y
-axis,then

M
2

and
M

4
w

illm
ove

in
opposite

di-
rections

up
and

dow
n

outof
the

plane.
The

m
ovem

ent
ofthe

driving
m

ass
causes

a
capacitance

change
relative

to
stationary

platessurrounding
it.Thischange

issensed
and

translated
into

the
m

easurem
entsignal.

2.1.2
InvenSense

InvenSense’s
gyro

design
is

based
on

the
three

separate
driving

(vibrating)
m

asses 2;
each

senses
angular

rate
at

a
differentaxis

(show
n

in
Figure

2(a)).
Each

m
ass

is
a

coupled
dual-m

assthatm
ove

in
opposite

directions.The
m

asses
that

sense
the

X
and

Y
axes

are
driven

out-of-
plane

(see
Figure

2(b)),w
hile

the
Z-axis

m
ass

is
driven

in-plane.A
sin

the
STM

icroelectronicsdesign
the

m
ove-

m
entdue

to
the

C
oriolisforce

ism
easuresby

capacitance
changes.

2.2
A

coustic
E

ffects

It
is

a
w

ell
know

n
fact

in
the

M
EM

S
com

m
unity

that
M

EM
S

gyrosare
susceptible

to
acoustic

noise
w

hich
de-

gradestheiraccuracy
[22,24,25].A

n
acoustic

signalaf-
fects

the
gyroscope

m
easurem

entby
m

aking
the

driving
m

ass
vibrate

in
the

sensing
axis

(the
axis

w
hich

senses
the

C
oriolis

force).
The

acoustic
signal

can
be

trans-
ferred

to
the

driving
m

ass
in

one
of

tw
o

w
ays.

First,it
m

ay
induce

m
echanicalvibrations

to
the

gyros
package.

A
dditionally,the

acoustic
signalcan

travelthrough
the

gyroscope
packaging

and
directly

affectthe
driving

m
ass

in
case

itis
suspended

in
air.

The
acoustic

noise
has

the
m

ostsubstantialeffectw
hen

itis
nearthe

resonance
fre-

quency
ofthe

vibrating
m

ass.Such
effectsin

som
e

cases
can

renderthe
gyro’sm

easurem
entsuselessoreven

satu-
rated.Therefore

to
reduce

the
noise

effectsvendorsm
an-

ufacture
gyros

w
ith

a
high

resonance
frequency

(above

1It
is

indicated
in

[1]
that

STM
icroelectronics

uses
a

driving
fre-

quency
ofover20

K
H

z.
2A

ccording
to

[43]the
driving

frequency
ofthe

m
asses

is
betw

een
25

K
H

z
and

30
K

H
z.

2



(a)
M

EM
S

structure
(b)

D
riving

m
ass

m
ovem

entdepending
on

the
angularrate

Figure
1:

STM
icroelectronics

3-axis
gyro

design
(Taken

from
[16].

Figure
copyrightof

STM
icroelectronics.

U
sed

w
ith

perm
ission.)

(a)
M

EM
S

structure
(b)

D
riving

m
assm

ovem
entdepending

on
the

angu-
larrate

Figure
2:InvenSense

3-axis
gyro

design
(Taken

from
[43].Figure

copyrightofInvenSense.U
sed

w
ith

perm
ission.)

20
K

H
z)

w
here

acoustic
signals

are
m

inim
al.

N
onethe-

less,in
our

experim
ents

w
e

found
thatacoustic

signals
atfrequencies

m
uch

low
erthan

the
resonance

frequency
stillhave

a
m

easurable
effecton

a
gyro’s

m
easurem

ents,
allow

ing
one

to
reconstructthe

acoustic
signal.

2.3
C

haracteristics
of

a
gyro

as
a

m
icro-

phone

D
ue

to
the

gyro’sacoustic
susceptibility

one
can

treatgy-
roscope

readings
as

if
they

w
ere

audio
sam

ples
com

ing
from

a
m

icrophone.
N

ote
thatthe

frequency
ofan

audi-
ble

signalis
higherthan

20
H

z,w
hile

in
com

m
on

cases
the

frequency
of

change
of

m
obile

device’s
angular

ve-
locity

islow
erthan

20
cyclespersecond.Therefore,one

can
high-pass-filterthe

gyroscope
readingsin

orderto
re-

tain
only

the
effectsofan

audio
signaleven

ifthe
m

obile
device

is
m

oving
about.N

onetheless,itshould
be

noted
thatthis

filtering
m

ay
resultin

som
e

loss
ofacoustic

in-
form

ation
since

som
e

aliased
frequenciesm

ay
be

filtered
out(see

Section
2.3.2).

In
the

follow
ing

w
e

explore
the

gyroscope
characteristics

from
a

standpointofan
acous-

tic
sensor,i.e.a

m
icrophone.In

thissection
w

e
exem

plify
these

characteristics
by

experim
enting

w
ith

G
alaxy

S
III

w
hich

has
an

STM
icroelectronics

gyro
[6].

2.3.1
Sam

pling

Sam
pling

resolution
is

m
easured

by
the

num
ber

of
bits

per
sam

ple.
M

ore
bits

allow
us

to
sam

ple
the

sig-
nalm

ore
accurately

atany
given

tim
e.A

llthe
latestgen-

erations
of

gyroscopes
have

a
sam

ple
resolution

of
16

bits
[9,12].

This
is

com
parable

to
a

m
icrophone’s

sam
-

pling
resolution

used
in

m
ostaudio

applications.

Sam
pling

frequency
is

the
rate

at
w

hich
a

signal
is

sam
pled.

A
ccording

to
the

N
yquist

sam
pling

theorem
a

sam
pling

frequency
f

enables
us

to
reconstruct

sig-
nals

atfrequencies
of

up
to

f/2.
H

ence,a
higher

sam
-

pling
frequency

allow
susto

m
ore

accurately
reconstruct

the
audio

signal.
In

m
ostm

obile
devices

and
operating

system
s

an
application

is
able

to
sam

ple
the

output
of

a
m

icrophone
at

up
to

44.1
K

H
z.

A
telephone

system
(PO

TS)
sam

ples
an

audio
signalat8000

H
z.

H
ow

ever,
STM

icroelectronics’gyroscope
hardw

are
supports

sam
-

pling
frequencies

ofup
to

800
H

z
[9],w

hile
InvenSense

gyros’hardw
are

supportsam
pling

frequency
up

to
8000

H
z

[12].
M

oreover,allm
obile

operating
system

s
bound

the
sam

pling
frequency

even
further–

up
to

200
H

z
–

to
lim

itpow
erconsum

ption.
O

n
top

ofthat,itappears
that

som
e

brow
sertoolkitslim

itthe
sam

pling
frequency

even
further.

Table
1

sum
m

arizes
the

results
of

our
experi-

3



Sam
pling

Freq.[H
z]

Android 4.4

application
200

C
hrom

e
25

Firefox
200

O
pera

20

iOS 7

application
100

[2]
Safari

20
C

hrom
e

20

Table
1:

M
axim

um
sam

pling
frequencies

on
different

platform
s

m
entsm

easuring
the

m
axim

um
sam

pling
frequenciesal-

low
ed

in
the

latestversions
ofA

ndroid
and

iO
S

both
for

application
and

forw
eb

application
running

on
com

m
on

brow
sers.

The
code

w
e

used
to

sam
ple

the
gyro

via
a

w
eb

page
can

be
found

in
A

ppendix
B

.The
results

indi-
cate

thata
G

ecko
based

brow
serdoes

notlim
itthe

sam
-

pling
frequency

beyond
the

lim
itim

posed
by

the
operat-

ing
system

,w
hile

W
ebK

itand
B

link
based

brow
sersdoes

im
pose

stricterlim
its

on
it.

2.3.2
A

liasing

A
snoted

above,the
sam

pling
frequency

ofa
gyro

isuni-
form

and
can

be
atm

ost200
H

z.
This

allow
s

us
to

di-
rectly

sense
audio

signals
ofup

to
100

H
z.A

liasing
is

a
phenom

enon
w

here
for

a
sinusoid

of
frequency

f,sam
-

pled
w

ith
frequency

fs ,the
resulting

sam
ples

are
indis-

tinguishable
from

those
ofanothersinusoid

offrequency
|f�

N
·fs |,forany

integerN
.The

values
corresponding

to
N
6=

0
are

called
im

ages
oraliases

offrequency
f.A

n
undesirable

phenom
enon

in
general,here

aliasing
allow

s
us

to
sense

audio
signals

having
frequencies

w
hich

are
higherthan

100
H

z,thereby
extracting

m
ore

inform
ation

from
the

gyroscope
readings.

This
is

illustrated
in

Fig-
ure

3.
U

sing
the

gyro,
w

e
recorded

a
single

280
H

z
tone.

Figure
3(a)

depicts
the

recorded
signalin

the
frequency

dom
ain

(x-axis)
over

tim
e

(y-axis).
A

lighter
shade

in
the

spectrogram
indicates

a
stronger

signalatthe
corre-

sponding
frequency

and
tim

e
values.

It
can

be
clearly

seen
thatthere

is
a

strong
signalsensed

atfrequency
80

H
z

starting
around

1.5
sec.

This
is

an
alias

of
the

280
H

z-tone.
N

ote
thatthe

aliased
tone

is
indistinguishable

from
an

actualtone
atthe

aliased
frequency.Figure

3(b)
depicts

a
recording

ofm
ultiple

shorttones
betw

een
130

H
z

and
200

H
z.A

gain,a
strong

signalcan
be

seen
atthe

aliased
frequencies

corresponding
to

130
-170

H
z 3.W

e
also

observe
som

e
w

eakeraliases
thatdo

notcorrespond
to

the
base

frequencies
of

the
recorded

tones,
and

per-

3W
e

do
notsee

the
aliases

corresponding
to

180
-

200
H

z,w
hich

m
ightbe

m
asked

by
the

noise
atlow

frequencies,i.e.,under20
H

z.

haps
correspond

to
theirharm

onics.
Figure

3(c)depicts
the

recording
of

a
chirp

in
the

range
of

420
-

480
H

z.
The

aliased
chirp

isdetectable
in

the
range

of20
-80

H
z;

how
everitis

a
ratherw

eak
signal.

2.3.3
Selfnoise

The
self

noise
characteristic

of
a

m
icrophone

indicates
w

hatis
the

m
ostquietsound,in

decibels,a
m

icrophone
can

pick
up,i.e.the

sound
thatis

justoverits
selfnoise.

To
m

easure
the

gyroscope’s
selfnoise

w
e

played
80

H
z

tones
for10

seconds
atdifferentvolum

es
w

hile
m

easur-
ing

itusing
a

decibelm
eter.

Each
tone

w
as

recorded
by

the
G

alaxy
S

III
gyroscope.

W
hile

analyzing
the

gyro
recordings

w
e

realized
thatthe

gyro
readings

have
a

no-
ticeable

increase
in

am
plitude

w
hen

playing
tones

w
ith

volum
e

of
75

dB
or

higher
w

hich
is

com
parable

to
the

volum
e

ofa
loud

conversation.M
oreover,a

FFT
plotof

the
gyroscope

recordings
gives

a
noticeable

peak
atthe

tone’sfrequency
w

hen
playing

tone
w

ith
a

volum
e

aslow
as57

dB
w

hich
isbelow

the
sound

levelofa
norm

alcon-
versation.These

findingsindicate
thata

gyro
can

pick
up

audio
signals

w
hich

are
low

erthan
100

H
Z

during
m

ost
conversationsm

ade
overornextto

the
phone.To

testthe
selfnoise

ofthe
gyro

foraliased
tonesw

e
played

150
H

z
and

250
H

z
tones.

The
low

estlevelof
sound

the
gyro

picked
up

w
as

67
dB

and
77

dB
,respectively.These

are
m

uch
highervaluesthatare

com
parable

to
a

loud
conver-

sation.

2.3.4
D

irectionality

W
e

now
m

easure
how

the
angle

atw
hich

the
audio

signal
hits

the
phone

affects
the

gyro.
For

this
experim

entw
e

played
an

80
H

z
tone

at
the

sam
e

volum
e

three
tim

es.
The

tone
w

as
recorded

at
each

tim
e

by
the

G
alaxy

S
IIIgyro

w
hile

the
phone

rested
ata

differentorientation
allow

ing
the

signal
to

hit
it

parallel
to

one
of

its
three

axes
(see

Figure
4).The

gyroscope
senses

in
three

axes,
hence

for
each

m
easurem

ent
the

gyro
actually

outputs
three

readings–
one

peraxis.A
sw

e
show

nextthisprop-
erty

benefits
the

gyro’s
ability

to
pick

up
audio

signals
from

every
direction.

For
each

recording
w

e
calculated

the
FFT

m
agnitude

at
80

H
z.

Table
2

sum
m

arizes
the

results.
Itis

obvious
from

the
table

thatforeach
direction

the
audio

hitthe
gyro,there

is
atleastone

axis
w

hose
read-

ings
are

dom
inant

by
an

order
of

m
agnitude

com
pared

to
the

rest.
This

can
be

explained
by

STM
icroelectron-

ics
gyroscope

design
as

depicted
in

Figure
1

4.W
hen

the
signaltravels

in
parallelto

the
phone’s

x
or

y
axes,the

sound
pressure

vibrates
m

ostly
m

asses
laid

along
the

re-
spective

axis,i.e.M
2

and
M

4
for

x
axis

and
M

1
and

M
3

4This
is

the
design

ofthe
gyro

builtinto
G

alaxy
S

III.
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Figure
3:Exam

ple
ofaliasing

on
a

m
obile

device.N
exus

4
(a,c)and

G
alaxy

SII(b).

Tone
direction:

X
Y

Z
R

ecording
direction:

x
y

z
x

y
z

x
y

z
A

m
plitude:

0.002
0.012

0.0024
0.01

0.007
0.004

0.007
0.0036

0.0003

Table
2:Sensed

am
plitude

forevery
direction

ofa
tone

played
atdifferentorientations

relative
to

the
phone.Foreach

orientation
the

dom
inantsensed

directions
are

em
phasized.

Figure
4:C

oordinate
system

ofA
ndroid

and
iO

S.

for
the

y
axis;therefore,the

gyro
prim

arily
senses

a
ro-

tation
atthe

y
orx

axes,respectively
(see

Section
2.1.1).

W
hen

the
signaltravels

in
parallelto

the
phone’s

z
axis

then
the

sound
pressure

vibrates
allthe

4
m

asses
up

and
dow

n,hence
the

gyro
prim

arily
senses

a
rotation

atboth
x

and
y

axes.
These

findings
indicate

that
the

gyro
is

an
om

ni-
directionalaudio

sensorallow
ing

itto
pick

up
audio

sig-
nalfrom

every
direction.

3
Speech

analysis
based

on
a

single
gyro-

scope

In
thissection

w
e

show
thatthe

acoustic
signalm

easured
by

a
single

gyroscope
is

sufficientto
extractinform

ation
aboutthe

speech
signal,such

as
speaker

characteristics

and
identity,

and
even

recognize
the

spoken
w

ords
or

phrases.
W

e
do

so
by

leveraging
the

fact
that

aliasing
causes

inform
ation

leaks
from

higher
frequency

bands
into

the
sub-N

yquistrange.
Since

the
fundam

entals
of

hum
an

voices
are

roughly
in

the
range

of80
–

1100
H

z
[20],w

e
can

capture
a

large
fraction

of
the

interesting
frequencies,

considering
the

results
w

e
observe

in
2.3.2.

A
lthough

w
e

do
notdelve

into
com

paring
perform

ance
fordifferenttypesofspeak-

ers,
one

m
ight

expect
that

given
a

stronger
gyroscope

response
for

low
frequencies,typicaladultm

ale
speech

(B
ass,

B
aritone,

Tenor)
could

be
better

analyzed
than

typical
fem

ale
or

child
speech

(A
lto,

M
ezzo-Soprano,

Soprano)
5,how

ever
our

tests
show

thatthis
is

notnec-
essarily

the
case.

The
signalrecording,as

captured
by

the
gyroscope,is

notcom
prehensible

to
a

hum
an

ear,and
exhibits

a
m

ix-
ture

oflow
frequenciesand

aliasesoffrequenciesbeyond
the

N
yquistsam

pling
frequency

(w
hich

is
1/2

the
sam

-
pling

rate
ofthe

G
yroscope,i.e.100

H
z).W

hile
the

sig-
nalrecorded

by
a

single
device

doesnotresem
ble

speech,
itis

possible
to

train
a

m
achine

to
transcribe

the
signal

w
ith

significantsuccess.
Speech

recognition
tasks

can
be

classified
into

sev-
eraltypesaccording

to
the

setup.Speech
recognition

can
handle

fluentspeech
or

isolated
w

ords
(or

phrases);op-
erate

on
a

closed
set

of
w

ords
(finite

dictionary)
or

an
open

set 6;
It

can
also

be
speaker

dependent
(in

w
hich

case
the

recognizeris
trained

perspeaker)orspeakerin-

5Form
ore

inform
ation

aboutvocalrange
see

h
t
t
p
:
/
/
w
w
w.w

i
k
i
p
e
d
i
a.o

r
g
/
w
i
k
i
/
V
o
c
a
l
_
r
a
n
g
e

6For
exam

ple
by

identifying
phonem

es
and

com
bining

them
to

w
ords.

5



dependent(in
w

hich
case

the
recognizer

is
expected

to
identify

phrases
pronounced

by
different

speakers
and

possibly
ones

thatw
ere

notencountered
in

the
training

set).
A

dditionally,speech
analysis

m
ay

be
also

used
to

identify
the

speaker.
W

e
focused

on
speaker

identification
(including

gen-
der

identification
of

the
speaker)

and
isolated

w
ords

recognition
w

hile
attem

pting
both

speaker
independent

and
speakerdependentrecognition.A

lthough
w

e
do

not
dem

onstrate
fluentspeech

transcription,w
e

suggestthat
successfulisolated

w
ordsrecognition

could
be

fairly
eas-

ily
transform

ed
into

a
transcription

algorithm
by

incor-
porating

w
ord

slicing
and

H
M

M
[40].

W
e

did
notaim

to
im

plem
enta

state-of-the-artspeech
recognition

algo-
rithm

,
nor

to
thoroughly

evaluate
or

do
a

com
parative

analysis
of

the
classification

tests.
Instead,w

e
tried

to
indicate

the
potentialrisk

by
show

ing
significantsuccess

rates
ofourspeech

analysis
algorithm

s
com

pared
to

ran-
dom

ly
guessing.

This
section

describes
speech

analysis
techniques

that
are

com
m

on
in

practice,
our

approach,
and

suggestions
forfurtherim

provem
ents

upon
it.

3.1
Speech

processing:
features

and
algo-

rithm
s

3.1.1
Features

Itis
com

m
on

for
various

feature
extraction

m
ethods

to
view

speech
as

a
process

thatis
stationary

forshorttim
e

w
indow

s.
Therefore

speech
processing

usually
involves

segm
entation

of
the

signal
to

short
(10

–
30

m
s)

over-
lapping

or
non-overlapping

w
indow

s
and

operation
on

them
.

This
results

in
a

tim
e-series

offeatures
thatchar-

acterize
the

tim
e-dependent

behavior
of

the
signal.

If
w

e
are

interested
in

tim
e-independentpropertiesw

e
shall

use
spectralfeatures

orthe
statistics

ofthose
tim

e-series
(such

as
m

ean,variance,skew
ness

and
kurtosis).

M
el-Frequency

C
epstral

C
oefficients

(M
FC

C
)

are
w

idely
used

features
in

audio
and

speech
processing

ap-
plications.

The
M

el-scale
basically

com
pensates

forthe
non-linear

frequency
response

of
the

hum
an

ear 7.
The

C
epstrum

transform
ation

isan
attem

ptto
separate

the
ex-

citation
signaloriginated

by
airpassing

through
the

vocal
tractfrom

the
effectof

the
vocaltract(acting

as
a

filter
shaping

thatexcitation
signal).The

latteris
m

ore
im

por-
tantforthe

analysisofthe
vocalsignal.Itisalso

com
m

on
to

take
the

firstand
second

derivatives
of

the
M

FC
C

as
additionalfeatures,indicative

oftem
poralchanges

[30].

ShortTim
e

Fourier
Transform

(ST
FT

)
isessentially

a
spectrogram

of
the

signal.
W

indow
ing

is
applied

to

7A
pproxim

ated
as

logarithm
ic

by
the

M
el-scale

short
overlapping

segm
ents

of
the

signal
and

FFT
is

com
puted.

The
result

captures
both

spectral
and

tim
e-

dependentfeatures
ofthe

signal.

3.1.2
C

lassifiers

Support
Vector

M
achine

(SV
M

)
is

a
generalbinary

classifier,trained
to

distinguish
to

groups.
W

e
use

SV
M

to
distinguish

m
ale

and
fem

ale
speakers.

M
ulti-class

SV
M

s
can

be
constructed

using
m

ultiple
binary

SV
M

s,
to

distinguish
betw

een
m

ultiple
groups.W

e
used

a
m

ulti-
classSV

M
to

distinguish
betw

een
m

ultiple
speakers,and

to
recognize

w
ords

from
a

lim
ited

dictionary.

G
aussian

M
ixture

M
odel(G

M
M

)
has

been
success-

fully
used

forspeakeridentification
[41].W

e
can

train
a

G
M

M
foreach

group
in

the
training

stage.In
the

testing
stage

w
e

can
obtain

a
m

atch
score

for
the

sam
ple

using
each

one
ofthe

G
M

M
sand

classify
the

sam
ple

according
to

the
group

corresponding
to

the
G

M
M

thatyields
the

m
axim

um
score.

D
ynam

ic
Tim

e
W

arping
(D

T
W

)
is

a
tim

e-series
m

atching
and

alignm
enttechnique

[37].Itcan
be

used
to

m
atch

tim
e-dependentfeatures

in
presence

of
m

isalign-
m

ent
or

w
hen

the
series

are
of

different
lengths.

O
ne

ofthe
challenges

in
w

ord
recognition

is
thatthe

sam
ples

m
ay

differin
length,resulting

in
differentnum

berofseg-
m

ents
used

to
extractfeatures.

3.2
Speaker

identification
algorithm

Prior
to

processing
w

e
converted

the
gyroscope

record-
ingsto

audio
filesin

W
AV

form
atw

hile
upsam

pling
them

to
8

K
H

z 8.
W

e
applied

silence
rem

ovalto
include

only
relevant

inform
ation

and
m

inim
ize

noise.
The

silence
rem

ovalalgorithm
w

as
based

on
the

im
plem

entation
in

[29],
w

hich
classifies

the
speech

into
voiced

and
un-

voiced
segm

ents
(filtering

out
the

unvoiced)
according

to
dynam

ically
setthresholdsforShort-Tim

e
Energy

and
SpectralC

entroid
features

com
puted

on
shortsegm

ents
of

the
speech

signal.
N

ote
that

the
gyroscope’s

zero-
offset

yields
particularly

noisy
recordings

even
during

unvoiced
segm

ents.
W

e
used

statistical
features

based
on

the
first

13
M

FC
C

com
puted

on
40

sub-bands.
For

each
M

FC
C

w
e

com
puted

the
m

ean
and

standard
deviation.

Those
features

reflect
the

spectral
properties

w
hich

are
inde-

pendent
of

the
pronounced

w
ord.

W
e

also
use

delta-
M

FC
C

(the
derivatives

ofthe
M

FC
C

),R
M

S
Energy

and
8A

lthough
upsam

pling
the

signalfrom
200

H
z

to
8

K
H

z
does

not
increase

the
accuracy

of
audio

signal,itis
m

ore
convenientto

handle
the

W
AV

file
athighersam

pling
rate

w
ith

standard
speech

processing
tools.
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SpectralC
entroid

statisticalfeatures.W
e

used
M

IRTool-
box

[32]
for

the
feature

com
putation.

It
is

im
portant

to
note

that
w

hile
M

FC
C

have
a

physical
m

eaning
for

realspeech
signal,in

ourcase
ofan

narrow
-band

aliased
signal,M

FC
C

don’tnecessarily
have

an
advantage,and

w
ere

used
partially

because
of

availability
in

M
IRTool-

box.W
e

attem
pted

to
identify

the
genderofthe

speaker,
distinguish

betw
een

differentspeakers
of

the
sam

e
gen-

derand
distinguish

betw
een

differentspeakersin
a

m
ixed

setof
m

ale
and

fem
ale

speakers.
For

gender
identifica-

tion
w

e
used

a
binary

SV
M

,and
for

speaker
identifica-

tion
w

e
used

m
ulti-class

SV
M

and
G

M
M

.W
e

also
at-

tem
pted

genderand
speakerrecognition

using
D

TW
w

ith
STFT

features.
A

llSTFT
features

w
ere

com
puted

w
ith

a
w

indow
of

512
sam

ples
w

hich,for
sam

pling
rate

of
8

K
H

z,corresponds
to

64
m

s.

3.3
Speech

recognition
algorithm

The
preprocessing

stage
for

speech
recognition

is
the

sam
e

as
for

speaker
identification.

Silence
rem

oval
is

particularly
im

portant
here,

as
the

noisy
unvoiced

seg-
m

ents
can

confuse
the

algorithm
,by

increasing
sim

ilar-
ity

w
ith

irrelevant
sam

ples.
For

w
ord

recognition,
w

e
are

less
interested

in
the

spectralstatisticalfeatures,but
rather

in
the

developm
ent

of
the

features
in

tim
e,

and
therefore

suitable
features

could
be

obtained
by

taking
the

fullspectrogram
.

In
the

classification
stage

w
e

ex-
tractthe

sam
e

features
fora

sam
ple

y.Foreach
possible

label
l

w
e

obtain
a

sim
ilarity

score
of

the
y

w
ith

each
sam

ple
X

li
corresponding

to
thatguessin

the
training

set.
Letus

denote
this

sim
ilarity

function
by

D
(y,X

li ).
Since

differentsam
ples

ofthe
sam

e
w

ord
can

differin
length,

w
e

use
D

TW
.W

e
sum

the
sim

ilarities
to

obtain
a

total
score

forthatguess

S
l=

Âi
D
(y,X

li )

A
fter

obtaining
a

totalscore
for

allpossible
w

ords,the
sam

ple
is

classified
according

to
the

m
axim

um
total

score
C
(y)

=
argm

ax
l

S
l

3.4
E

xperim
entsetup

O
ursetup

consisted
ofa

setofloudspeakersthatincluded
a

sub-w
oofer

and
tw

o
tw

eeters
(depicted

in
Figure

5).
The

sub-w
oofer

w
as

particularly
im

portant
for

experi-
m

enting
w

ith
low

-frequency
tones

below
200

H
z.

The
playback

w
as

done
atvolum

e
ofapproxim

ately
75

dB
to

obtain
ashigh

SN
R

aspossible
forourexperim

ents.This
m

eans
thatfor

m
ore

restrictive
attack

scenarios
(farther

source,low
ervolum

e)there
w

illbe
a

need
to

handle
low

Figure
5:Experim

entalsetup

SN
R

,perhapsby
filtering

outthe
noise

orapplying
som

e
otherpreprocessing

forem
phasizing

the
speech

signal.
9

3.4.1
D

ata

D
ue

to
the

low
sam

pling
frequency

ofthe
gyro,a

recog-
nition

of
speaker-independentgeneralspeech

w
ould

be
an

am
bitious

long-term
task.Therefore,in

this
w

ork
w

e
set

out
to

recognize
speech

of
a

lim
ited

dictionary,the
recognition

ofw
hich

w
ould

stillleak
substantialprivate

inform
ation.

For
this

w
ork

w
e

chose
to

focus
on

the
digits

dictionary,
w

hich
includes

the
w

ords:
zero,

one,
tw

o...,nine,and
”oh”.R

ecognition
ofsuch

w
ords

w
ould

enable
an

attacker
to

eavesdrop
on

private
inform

ation,
such

as
creditcard

num
bers,telephone

num
bers,social

security
num

bers
and

the
like.

This
inform

ation
m

ay
be

eavesdropped
w

hen
the

victim
speaks

overornextto
the

phone.
In

our
experim

ents,
w

e
use

the
follow

ing
corpus

of
audio

signals
on

w
hich

w
e

tested
our

recognition
algo-

rithm
s.

T
ID

IG
IT

S
This

is
a

subset
of

a
corpus

published
in

[33].
It

includes
speech

of
isolated

digits,
i.e.,

11
w

ords
per

speaker
w

here
each

speaker
recorded

each
w

ord
tw

ice.There
are

10
speakers(5

fem
ale

and
5

m
ale).

In
total,there

are
10⇥

11⇥
2
=

220
recordings.The

cor-
pus

is
digitized

at20
kH

z.

3.4.2
M

obile
devices

W
e

prim
arily

conducted
our

experim
ents

using
the

fol-
low

ing
m

obile
devices:

9W
e

tried
recording

in
an

anechoic
cham

ber,butitdidn’tseem
to

provide
better

recognition
results

com
pared

to
a

regular
room

.
W

e
therefore

did
notproceed

w
ith

the
anechoic

cham
berexperim

ents.Yet,
furthertesting

is
needed

to
understand

w
hetherw

e
can

benefitsignifi-
cantly

from
an

anechoic
environm

ent.

7



1.
N

exus4
phone

w
hich

according
to

a
teardow

n
anal-

ysis
[13]

is
equipped

w
ith

an
InvenSense

M
PU

-
6050

[12]gyroscope
and

accelerom
eterchip.

2.
N

exus
7

tabletw
hich

according
to

a
teardow

n
anal-

ysis[14]isequipped
w

ith
an

InverSense
M

PU
-6050

gyroscope
and

accelerom
eter.

3.
Sam

sung
G

alaxy
S

III
phone

w
hich

according
to

a
teardow

n
analysis

[6]
is

equipped
w

ith
an

STM
i-

croelectronicsLSM
330D

LC
[10]gyroscope

and
ac-

celerom
eterchip.

3.5
Sphinx

W
e

first
try

to
recognize

digit
pronunciations

using
general-purpose

speech
recognition

softw
are.

W
e

used
Sphinx-4

[47]–
a

w
ell-know

n
open-source

speech
recog-

nizer
and

trainer
developed

in
C

arnegie
M

ellon
U

niver-
sity.O

uraim
forSphinx

is
to

recognize
gyro-recordings

ofthe
TID

IG
ITS

corpus.
A

s
a

firststep,in
orderto

test
the

w
aters,

instead
of

using
actual

gyro
recordings

w
e

dow
nsam

pled
the

recordings
of

the
TID

ITS
corpus

to
200

H
z;

then
w

e
trained

Sphinx
based

on
the

m
odified

recordings.
The

aim
ofthis

experim
entis

to
understand

w
hetherSphinx

detects
any

usefulinform
ation

from
the

sub-100
H

z
band

ofhum
an

speech.Sphinx
had

a
reason-

able
success

rate,recognizing
about40%

of
pronuncia-

tions.
Encouraged

by
the

above
experim

entw
e

then
recorded

the
TID

IG
ITS

corpus
using

a
gyro

–
both

for
G

alaxy
S

IIIand
N

exus4.Since
Sphinx

acceptsrecording
in

W
AV

form
atw

e
had

to
convertthe

raw
gyro

recordings.
N

ote
thatatthis

pointforeach
gyro

recording
w

e
had

3
W

AV
files,one

for
each

gyro
axis.

The
finalstage

is
silence

rem
oval.Then

w
e

trained
Sphinx

to
create

a
m

odelbased
on

a
training

subsetofthe
TID

IG
ITS,and

tested
itusing

the
com

plem
entofthis

subset.
The

recognition
rates

foreitheraxes
and

eitherN
exus

4
orG

alaxy
S

IIIw
ere

ratherpoor:14%
on

average.This
presents

only
m

arginal
im

provem
ent

over
the

expected
success

ofa
random

guess
w

hich
w

ould
be

9%
.

This
poor

result
can

be
explained

by
the

fact
that

Sphinx’srecognition
algorithm

sare
geared

tow
ardsstan-

dard
speech

recognition
tasks

w
here

m
ostof

the
voice-

band
ispresentand

islesssuited
to

speech
w

ith
very

low
sam

pling
frequency.

3.6
C

ustom
recognition

algorithm
s

In
this

section
w

e
presentthe

results
obtained

using
our

custom
algorithm

.
B

ased
on

the
TID

IG
ITS

corpus
w

e
random

ly
perform

ed
a

10-fold
cross-validation.W

e
refer

m
ainly

to
the

results
obtained

using
N

exus
4

gyroscope

SV
M

G
M

M
D

TW
N

exus
4

80%
72%

84%
G

alaxy
S

III
82%

68%
58%

Table
3:Speaker’s

genderidentification
results

SV
M

G
M

M
D

TW

Nexus 4

M
ixed

fem
ale/m

ale
23%

21%
50%

Fem
ale

speakers
33%

32%
45%

M
ale

speakers
38%

26%
65%

Galaxy S III

M
ixed

fem
ale/m

ale
20%

19%
17%

Fem
ale

speakers
30%

20%
29%

M
ale

speakers
32%

21%
25%

Table
4:Speakeridentification

results

readings
in

our
discussion.

W
e

also
included

in
the

ta-
bles

som
e

results
obtained

using
a

G
alaxy

IIIdevice,for
com

parison.
R

esultsforgenderidentification
are

presented
in

Table
3.

A
s

w
e

see,
using

D
TW

scoring
for

STFT
features

yielded
a

m
uch

bettersuccess
rate.

R
esults

forspeakeridentification
are

presented
in

Ta-
ble

4.
Since

the
results

for
a

m
ixed

fem
ale-m

ale
setof

speakers
m

ay
be

partially
attributed

to
successfulgender

identification,w
e

tested
classification

forspeakersofthe
sam

e
gender.

In
this

setup
w

e
have

5
differentspeakers.

The
im

proved
classification

rate
(exceptforD

TW
forfe-

m
ale

speakerset)can
be

partially
attributed

to
a

sm
aller

num
berofspeakers.

The
results

for
speaker-independent

isolated
w

ord
recognition

are
sum

m
arized

in
Table

5.
W

e
had

correct
classification

rate
of⇠

10%
using

m
ulti-class

SV
M

and
G

M
M

trained
w

ith
M

FC
C

statisticalfeatures,w
hich

is
alm

ostequivalentto
a

random
guess.

U
sing

D
TW

w
ith

STFT
featuresw

e
got23%

correctclassification
form

ale
speakers,26%

forfem
ale

speakers
and

17%
fora

m
ixed

setofboth
fem

ale
and

m
ale

speakers.The
confusion

m
a-

trix
in

Figure
6,corresponding

to
the

m
ixed

speaker-set
recorded

on
a

N
exus

4,explains
the

notso
high

recog-
nition

rate,exhibiting
m

any
false

positives
forthe

w
ords

”6”
and

”9”.
A

tthe
sam

e
tim

e
the

recognition
rate

for

SV
M

G
M

M
D

TW

Nexus 4

M
ixed

fem
ale/m

ale
10%

9%
17%

Fem
ale

speakers
10%

9%
26%

M
ale

speakers
10%

10%
23%

Galaxy S III

M
ixed

fem
ale/m

ale
7%

12%
7%

Fem
ale

speakers
10%

10%
12%

M
ale

speakers
10%

6%
7%

Table
5:

Speaker-independent
case

–
isolated

w
ords

recognition
results
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Figure
6:

Speaker
independent

w
ord

recognition
using

D
TW

:confusion
m

atrix
asa

heatm
ap.c

(i,j) corresponds
to

the
num

berofsam
ples

from
group

ithatw
ere

classi-
fied

as
j,w

here
i,jare

the
row

and
colum

n
indices

re-
spectively.

SV
M

G
M

M
D

TW
15%

5%
65%

Table
6:Speaker-dependentcase

–
isolated

w
ordsrecog-

nition
fora

single
speaker.

R
esults

obtained
via

”leave-
one-out”

cross-validation
on

44
recorded

w
ords

pro-
nounced

by
a

single
speaker.

R
ecorded

using
a

N
exus

4
device.
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Figure
7:

Speaker
dependent

w
ord

recognition
using

D
TW

:confusion
m

atrix
as

a
heatm

ap.

these
particularw

ordsishigh,contributing
to

the
correct

identification
rate.

For
a

speaker-dependentcase
one

m
ay

expectto
get

better
recognition

results.
W

e
recorded

a
set

of
44

digit
pronunciations,

w
here

each
digit

w
as

pronounced
4

tim
es.W

e
tested

the
perform

ance
ofourclassifiers

us-
ing

”leave-one-out”
cross-validation.The

resultsare
pre-

sented
in

Table
6,and

asw
e

expected
exhibitan

im
prove-

m
entcom

pared
to

the
speakerindependentrecognition

10

(exceptforG
M

M
perform

ance
thatis

equivalentto
ran-

dom
ly

guessing).The
confusion

m
atrix

corresponding
to

speaker-dependentw
ord

recognition
using

D
TW

is
pre-

sented
in

Figure
7.

D
TW

m
ethod

outperform
s

SV
M

and
G

M
M

in
m

ost
cases.

O
ne

w
ould

expectthatD
TW

w
ould

perform
bet-

ter
for

w
ord

recognition
since

the
changing

in
tim

e
of

the
spectral

features
is

taken
into

account.
W

hile
true

for
N

exus
4

devices
it

did
not

hold
for

m
easurem

ents
taken

w
ith

G
alaxy

III.possible
explanation

to
thatisthat

the
low

-pass
filtering

on
the

G
alaxy

III
device

renders
allm

ethods
quite

ineffective
resulting

in
a

success
rate

equivalent
to

a
random

guess.
For

gender
and

speaker
identification,

w
e

w
ould

expect
statistical

spectral
fea-

tures
based

m
ethods

(SV
M

and
G

M
M

)
to

perform
at

least
as

good
as

D
TW

.
It

is
only

true
for

the
G

alaxy
S

III
m

ixed
speaker

setand
gender

identification
cases,

butnotfor
the

other
experim

ents.
Specifically

for
gen-

deridentification,capturng
the

tem
poraldevelopm

entof
the

spectralfeature
w

ouldn’tseem
like

a
clearadvantage

and
is

therefore
som

ew
hatsurprising.

O
ne

com
parative

study
thatsupportsthe

advantage
ofD

TW
overSV

M
for

speaker
recognition

is
[48].

It
doesn’t

explain
though

w
hy

it
outperform

s
G

M
M

w
hich

is
a

w
ell

established
m

ethod
for

speaker
identification.

M
ore

experim
enta-

tion
is

required
to

confirm
w

hether
this

phenom
enon

is
consistentand

w
hetheritis

related
to

capturing
the

high
frequencies.

3.7
Further

im
provem

ent

W
e

suggest
several

possible
future

im
provem

ents
on

our
recognition

algorithm
s.

Phonem
e

recognition
in-

stead
of

w
hole

w
ords,

in
com

bination
w

ith
an

H
M

M
could

im
prove

the
recognition

results.
This

could
be

m
ore

suitable
since

different
pronunciations

have
dif-

ferentlengths,w
hile

an
H

M
M

could
introduce

a
better

probabilistic
recognition

of
the

w
ords.

Pre-filtering
of

the
signalcould

be
beneficialand

reduce
irrelevantnoise.

Itis
notclear

w
hich

frequencies
should

be
filtered

and
therefore

som
e

experim
entation

is
needed

to
determ

ine
it.10Itisthe

place
to

m
ention

thata
largertraining

setforspeakerinde-
pendentw

ord
recognition

is
likely

to
yield

betterresults.Forourtests
w

e
used

relatively
sm

alltraining
and

evaluation
sets.
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Forourexperim
ents,w

e
used

sam
plesrecorded

by
the

gyroscope
for

training.
For

speaker-dependent
speech

recognition
w

e
can

im
agine

it
m

ay
be

easier
to

obtain
regular

speech
sam

ples
for

a
particular

speaker
than

a
transcribed

recording
of

gyroscope
sam

ples.
Even

for
speakerindependentspeech

recognition,itw
ould

be
eas-

ier
to

use
existing

audio
corpora

for
training

a
speech

recognition
engine

than
to

produce
gyroscope

recordings
fora

large
setofw

ords.Forthatpurpose
itw

ould
be

in-
teresting

to
test

how
w

ell
the

recognition
can

perform
w

hen
the

training
setis

based
on

norm
alaudio

record-
ings,

dow
nsam

pled
to

200
H

z
to

sim
ulate

a
gyroscope

recording.
A

nother
possible

im
provem

ent
is

to
leverage

the
3-

axisrecordings.Itisobviousthatthe
three

recordingsare
correlated

w
hile

the
noise

ofgyro
readingsisnot.H

ence,
one

m
ay

take
advantage

ofthis
to

geta
com

posed
signal

ofthe
three

axes
to

geta
bettersignal-to-noise

ratio.
W

hile
w

e
suggested

thatthe
signalcom

ponentsrelated
to

speech,and
those

related
to

m
otion

lie
in

separate
fre-

quency
bands,the

perform
ance

ofspeech
analysis

in
the

presence
ofsuch

noise
is

yetto
be

evaluated.

4
R

econstruction
using

m
ultiple

devices

In
this

section
w

e
suggestthatisolated

w
ord

recognition
can

be
im

proved
ifw

e
sam

ple
the

gyroscopesofm
ultiple

devicesthatare
in

close
proxim

ity,such
thatthey

exhibit
a

sim
ilar

response
to

the
acoustic

signals
around

them
.

Thiscan
happen

forinstance
in

a
conference

room
w

here
tw

o
m

obile
devices

are
running

m
alicious

applications
or,

having
a

brow
ser

supporting
high-rate

sam
pling

of
the

gyroscope,are
tricked

into
brow

sing
to

a
m

alicious
w

ebsite.
W

e
do

not
refer

here
to

the
possibility

of
using

sev-
eral

different
gyroscope

readings
to

effectively
obtain

a
larger

feature
vector,

or
have

the
classification

algo-
rithm

take
into

accountthe
score

obtained
for

allread-
ings.W

hile
such

m
ethodsto

exploitthe
presence

ofm
ore

than
one

acoustic
side-channelm

ay
prove

very
efficient

w
e

leave
them

outside
the

scope
of

this
study.

It
also

m
akessense

to
look

into
existing

m
ethodsforenhancing

speech
recognition

using
m

ultiple
m

icrophones,covered
in

signalprocessing
and

m
achine

learning
literature

(e.g.,
[23]).

Instead,w
e

look
atthe

possibility
ofobtaining

an
en-

hanced
signal

by
using

all
of

the
sam

ples
for

recon-
struction,thuseffectively

obtaining
highersam

pling
rate.

M
oreover,w

e
hintatthe

m
ore

am
bitious

task
of

recon-
structing

a
signaladequate

enough
to

be
com

prehensible
by

a
hum

an
listener,in

a
case

w
here

w
e

gain
access

to
readingsfrom

severalcom
prom

ised
devices.W

hile
there

are
severalpracticalobstacles

to
it,w

e
outline

the
idea,

and
dem

onstrate
how

partialim
plem

entation
ofitfacili-

tates
the

autom
atic

speech
recognition

task.
W

e
can

look
at

our
system

as
an

array
of

tim
e-

interleaved
data

converters
(interleaved

A
D

C
s).

Inter-
leaved

A
D

C
s

are
m

ultiple
sam

pling
devices

w
here

each
sam

ples
the

signalw
ith

a
sub-N

yquistfrequency.W
hile

the
A

D
C

sshould
ideally

have
tim

e
offsetscorresponding

to
a

uniform
sam

pling
grid

(w
hich

w
ould

allow
to

sim
-

ply
interleave

the
sam

ples
and

reconstructaccording
to

the
W

hittaker-Shannon
interpolation

form
ula

[44]),usu-
ally

there
w

illbe
sm

alltim
e

skew
s.A

lso,D
C

offsetsand
differentinputgains

can
affectthe

resultand
m

ustallbe
com

pensated.
This

problem
is

studied
in

a
contextofanalog

design
and

m
otivated

by
the

need
to

sam
ple

high-frequency
sig-

nals
using

low
-cost

and
energy-efficient

low
-frequency

A
/D

converters.W
hile

m
any

papers
on

the
subjectexist,

such
as

[27],
the

proposed
algorithm

s
are

usually
very

hardw
are

centric,oriented
tow

ards
real-tim

e
processing

athigh-speed,and
m

ostly
capable

of
com

pensating
for

very
sm

allskew
s.

Som
e

of
them

require
one

A
D

C
that

sam
ples

the
signalabove

the
N

yquistrate,w
hich

is
not

available
in

our
case.

A
tthe

sam
e

tim
e,w

e
do

notaim
fora

very
efficient,real-tim

e
algorithm

.U
tilizing

record-
ings

from
m

ultiple
devices

im
plies

offline
processing

of
the

recordings,and
w

e
can

afford
a

long
run-tim

e
forthe

task.The
A

D
C

s
in

our
case

have
the

sam
e

sam
pling

rate
F

s
=

1/T
=

200.
W

e
assum

e
the

tim
e-skew

s
betw

een
them

are
random

in
the

range
[0,T

Q
]w

here
forN

A
D

C
s

T
Q
=

TN
is

the
N

yquistsam
pling

period.
B

eing
located

atdifferentdistances
from

the
acoustic

source
they

are
likely

to
exhibitconsiderably

differentinputgains,and
possibly

have
som

e
D

C
offset.[26]providesbackground

forunderstanding
the

problem
s

arising
in

this
configura-

tion
and

covers
som

e
possible

solutions.

4.1
R

econstruction
algorithm

4.1.1
Signaloffsetcorrection

To
correcta

constantoffsetw
e

can
take

the
m

ean
ofthe

G
yro

sam
plesand

com
pare

itto
0

to
getthe

constantoff-
set.Itis

essentially
a

sim
ple

D
C

com
ponentrem

oval.

4.1.2
G

ain
m

ism
atch

correction

G
ain

m
ism

atch
correction

is
crucialfora

successfulsig-
nalreconstruction.

W
e

correctthe
gain

by
norm

alizing
the

signalto
have

standard
deviation

equalto
1.

In
case

w
e

are
provided

w
ith

som
e

reference
signalw

ith
a

know
n

peak,w
e

can
adjustthe

gainsofthe
recordingsso

thatthe
am

plitude
atthis

peak
is

equalforallofthem
.
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4.1.3
Tim

e
m

ism
atch

correction

W
hile

gyroscope
m

otion
events

are
provided

w
ith

pre-
cise

tim
estam

ps
setby

the
hardw

are,w
hich

theoretically
could

have
been

used
foraligning

the
recordings,in

prac-
tice,w

e
cannotrely

on
the

clocksofthe
m

obile
devicesto

be
synchronized.Even

ifw
e

take
the

trouble
ofsynchro-

nizing
the

m
obile

device
clock

via
N

TP,oreven
better,a

G
PS

clock,the
delays

introduced
by

the
netw

ork,oper-
ating

system
and

furtherclock-driftw
illstand

in
the

w
ay

ofhaving
clock

accuracy
on

the
orderofa

m
illisecond

11.
W

hile
notenough

by
itself,such

synchronization
is

still
usefulforcoarse

alignm
entofthe

sam
ples.

El-M
anardescribes

foreground
and

background
tim

e-
m

ism
atch

calibration
techniques

in
his

thesis
[27].Fore-

ground
calibration

m
eans

there
is

a
know

n
signal

used
to

synchronized
allthe

A
D

C
s.

W
hile

forthe
purpose

of
testing

w
e

can
align

the
recordings

by
m

axim
izing

the
cross-correlation

w
ith

a
know

n
signal,played

before
w

e
startrecording,in

an
actualattack

scenario
w

e
probably

w
on’tbe

able
to

use
such

a
m

arker 12.
N

evertheless,in
our

tests
w

e
attem

pted
aligning

using
a

reference
sig-

nal
as

w
ell.

It
did

not
exhibit

a
clear

advantage
over

obtaining
coarse

alignm
entby

finding
the

m
axim

um
of

the
cross-correlation

betw
een

the
signals.

O
ne

can
also

exhaustively
search

a
certain

range
of

possible
offsets,

choosing
the

one
thatresultsin

a
reconstruction

ofa
sen-

sible
audio

signal.

Since
thisonly

yieldsalignm
enton

the
orderofa

sam
-

pling
period

of
a

single
gyroscope

(T
),w

e
stillneed

to
find

the
m

ore
precise

tim
e-skew

s
in

the
range

[0,T
].W

e
can

scan
a

range
of

possible
tim

e-skew
s,

choosing
the

one
thatyields

a
sensible

audio
signal.

W
e

can
think

of
an

autom
ated

evaluation
ofthe

resultby
a

speech
recog-

nition
engine

orscoring
according

to
featuresthatw

ould
indicate

hum
an

speech,
suggesting

a
successful

recon-
struction.

This
scanning

is
obviously

tim
e

consum
ing.

If
w

e
have

n
sources,w

e
setone

ofthe
tim

e
skew

s
(arbitrary)

to
0,

and
have

n
�

1
degrees

of
freedom

to
play

w
ith,

and
the

com
plexity

grow
sexponentially

w
ith

the
num

ber
of

sources.
N

evertheless,in
an

attack
scenario,itis

not
im

possible
to

m
anually

scan
allpossibilities

looking
for

the
bestsignalreconstruction,provided

the
inform

ation
is

valuable
to

the
eavesdropper.

11Each
device

sam
ples

w
ith

a
period

of
5

m
s,therefore

even
1

m
s

clock
accuracy

w
ould

be
quite

coarse.
12W

hile
an

attacker
m

ay
be

able
to

play
using

one
of

the
phones’

speakers
a

know
n

tone/chirp
(no

specialperm
issions

are
needed),itis

unlikely
to

be
loud

enough
to

be
picked

up
w

ellby
the

other
device,

and
definitely

depends
on

m
any

factors
such

as
distance,position

etc.

4.1.4
Signalreconstruction

from
non-uniform

sam
-

ples

A
ssum

ing
w

e
have

com
pensated

for
offset,

gain
m

is-
m

atch
and

found
the

precise
tim

e-skew
s

betw
een

the
sam

pling
devices,

w
e

are
dealing

w
ith

the
problem

of
signal

reconstruction
from

periodic,
non-uniform

sam
-

ples.
A

sem
inalpaperon

the
subjectis

[28]by
Eldaret

al.A
m

ong
otherw

orks
in

the
field

are
[39,46]and

[31].
Sindhi

et
al.[45]

propose
a

discrete
tim

e
im

plem
enta-

tion
of[28]using

digitalfilterbanks.The
generalgoalis,

given
sam

ples
on

a
non-uniform

periodic
grid,to

obtain
estim

ation
of

the
values

on
a

uniform
sam

pling
grid,as

close
as

possible
to

the
originalsignal.

A
theoretic

feasibility
justification

lies
in

Papoulis’
G

eneralized
Sam

pling
theorem

[38].Its
corollary

is
that

a
signalbandlim

ited
to

p
/T

Q
can

be
recovered

from
the

sam
ples

ofN
filters

w
ith

sam
pling

periods
T
=

N
T

Q .
13

W
e

suggestusing
one

of
the

proposed
m

ethods
for

sig-
nal

reconstruction
from

periodic
non-uniform

sam
ples.

W
ith

only
severaldevices

the
reconstructed

speech
w

ill
stillbe

narrow
-band.W

hile
itw

on’tnecessarily
be

easily
understandable

by
a

hum
an

listener,itcould
be

used
for

betterautom
ated

identification.A
pplying

narrow
band

to
w

ideband
speech

extension
algorithm

s
[36]

m
ight

pro-
vide

audio
signals

understandable
to

a
hum

an
listener.

W
e

suggest
using

one
of

the
m

ethods
for

signal
re-

construction
from

periodic
non-uniform

sam
ples

m
en-

tioned
above.

W
ith

only
several

devices
the

recon-
structed

speech
w

ill
still

be
narrow

-band.
For

exam
-

ple,
using

readings
from

tw
o

devices
operating

at
200

H
z

and
given

their
relative

tim
e-skew

w
e

obtain
an

ef-
fective

sam
pling

rate
of

400
H

z.
For

four
devices

w
e

obtain
a

sam
pling

rate
of800

H
z,and

so
on.W

hile
a

sig-
nalreconstructed

using
tw

o
devices

stillw
on’tbe

easily
understandable

by
a

hum
an

listener,itcould
be

used
to

im
prove

autom
atic

identification.
W

e
used

[28]
as

a
basis

for
our

reconstruction
algo-

rithm
.

The
discussion

of
recurrent

non-uniform
sam

-
pling

directly
pertainsto

ourtask.Itproposesa
filterbank

schem
e

to
interpolate

the
sam

ples
such

thatan
approxi-

m
ation

ofthe
valueson

the
uniform

grid
isobtained.The

derivation
ofthe

discrete-tim
e

interpolation
filtersispro-

vided
in

A
ppendix

A
.

This
m

ethod
allow

s
us

to
perform

reconstruction
w

ith
arbitrary

tim
e-skew

s;
how

ever
w

e
do

not
have

at
the

tim
e

a
good

m
ethod

for
either

a
very

precise
estim

ation

13Itis
im

portantto
note

thatin
our

case
the

signalis
notnecessar-

ily
bandlim

ited
as

required.
W

hile
the

base
pitch

of
the

speech
can

lie
in

the
range

[0,200·N
],itcan

contain
higher

frequencies
thatare

captured
in

the
recording

due
to

aliasing,and
m

ay
interfere

w
ith

the
reconstruction.

Itdepends
m

ainly
on

the
low

-pass
filtering

applied
by

the
gyroscope.In

InvenSense’sM
PU

-6050,D
igitalLow

-PassFiltering
(D

LPF)is
configurable

through
hardw

are
registers

[11],so
the

condi-
tions

depend
to

som
e

extenton
the

particulardriverim
plem

entation.
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SV
M

G
M

M
D

TW
18%

14%
77%

Table
7:Evaluation

ofthe
m

ethod
ofreconstruction

from
m

ultiple
devices.

R
esults

obtained
via

”leave-one-out”
cross-validation

on
44

recorded
w

ords
pronounced

by
a

single
speaker.R

ecorded
using

a
N

exus
4

device.

of
the

tim
e-skew

s
or

autom
atic

evaluation
of

the
recon-

struction
outcom

e
(w

hich
w

ould
enable

searching
over

a
range

of
possible

values).
For

our
experim

entw
e

ap-
plied

this
m

ethod
to

the
sam

e
set

of
sam

ples
used

for
speaker-dependentspeech

recognition
evaluation,w

hich
w

as
recorded

sim
ultaneously

by
tw

o
devices.

W
e

used
the

sam
e

value
fort,the

tim
e-skew

forallsam
ples,and

therefore
chose

the
expected

value
t
=

T
/2

w
hich

is
equivalent

to
the

particular
case

of
sam

pling
on

a
uni-

form
grid

(resulting
in

all-pass
interpolation

filters).Itis
essentially

the
sam

e
asinterleaving

the
sam

plesfrom
the

tw
o

readings,and
w

e
ended

up
im

plem
enting

this
trivial

m
ethod

as
w

ell,in
order

to
avoid

the
adverse

effects
of

applying
finite

non-idealfilters.
Itisim

portantto
note

thatw
hile

w
e

propose
a

m
ethod

rooted
in

signalprocessing
theory,w

e
cannotconfidently

attribute
the

im
proved

perform
ance

to
obtaining

a
sig-

nalthatbetter
resem

bles
the

original,untilw
e

take
full

advantage
ofthe

m
ethod

by
estim

ating
the

precise
tim

e-
skew

foreach
recording,and

applying
true

non-uniform
reconstruction.Itiscurrently

leftasan
interesting

future
im

provem
ent,for

w
hich

the
outlined

m
ethod

can
serve

as
a

starting
point.

In
this

sense,our
actualexperim

ent
can

be
seen

astaking
advantage

ofbetterfeature
vectors,

com
prised

ofdata
from

m
ultiple

sources.

4.1.5
E

valuation

W
e

evaluated
this

approach
by

repeating
the

speaker-
dependent

w
ord

recognition
experim

ent
on

signals
re-

constructed
from

readingsoftw
o

N
exus4

devices.Table
7

sum
m

arizes
the

finalresults
obtained

using
the

sam
ple

interleaving
m

ethod
14.

There
w

as
a

consistentnoticeable
im

provem
entcom

-
pared

to
the

resultsobtained
using

readingsfrom
a

single
device,w

hich
supportsthe

value
ofutilizing

m
ultiple

gy-
roscopes.W

e
can

expectthatadding
m

ore
devices

to
the

setup
w

ould
furtherim

prove
the

speech
recognition.

14W
e

also
com

pared
the

perform
ance

ofthe
D

TW
classifieron

sam
-

ples
reconstructed

using
the

filterbank
approach.

Ityielded
a

slightly
low

ercorrectclassification
rate

of75%
w

hich
w

e
attribute

to
the

m
en-

tioned
effects

ofapplying
non-idealfinite

filters.

5
Further

A
ttacks

In
thissection

w
e

suggestdirectionsforfurtherexploita-
tion

ofthe
gyroscopes:

Increasing
the

gyro’ssam
pling

rate.
O

ne
possible

at-
tack

is
related

to
the

hardw
are

characteristics
ofthe

gyro
devices.

The
hardw

are
upper

bound
on

sam
pling

fre-
quency

is
higherthan

thatim
posed

by
the

operating
sys-

tem
orby

applications 15.
InvenSense

M
PU

-6000/M
PU

-
6050

gyroscopes
can

provide
a

sam
pling

rate
of

up
to

8000
H

z.
Thatis

the
equivalentof

a
PO

TS
(telephony)

line.
STM

icroelectronics
gyroscopes

only
allow

up
to

800
H

z
sam

pling
rate,w

hich
is

stillconsiderably
higher

than
the

200
H

z
allow

ed
by

the
operating

system
(see

A
ppendix

C
).

If
the

attacker
can

gain
a

one-tim
e

priv-
ileged

access
to

the
device,she

could
patch

an
applica-

tion,ora
kerneldriver,thus

increasing
this

upperbound.
The

nextsteps
ofthe

attack
are

sim
ilar:

obtaining
gyro-

scope
m

easurem
ents

using
an

application
ortricking

the
userinto

leaving
the

brow
seropen

on
som

e
w

ebsite.O
b-

taining
such

a
high

sam
pling

rate
w

ould
enable

using
the

gyroscope
as

a
m

icrophone
in

the
fullsense

of
hearing

the
surrounding

sounds.

Source
separation.

B
ased

on
experim

entalresultspre-
sented

in
Section

2.3.4
itis

obvious
thatthe

gyroscope
m

easurem
ents

are
sensitive

to
the

relative
direction

from
w

hich
the

acoustic
signal

arrives.
This

m
ay

give
rise

to
the

possibility
to

detectthe
angle

of
arrival(A

oA
)

at
w

hich
the

audio
signalhits

the
phone.

U
sing

A
oA

de-
tection

one
m

ay
be

able
to

better
separate

and
process

m
ultiple

sources
of

audio,
e.g.

m
ultiple

speakers
near

the
phone.

A
m

bient
sound

recognition.
There

are
w

orks
(e.g.

[42])
w

hich
aim

to
identify

a
user’s

contextand
w

here-
abouts

based
on

the
am

bientnoise
detected

by
his

sm
art

phone,e.g
restaurant,street,office,and

so
on.Som

e
con-

texts
are

loud
enough

and
m

ay
have

distinctfingerprint
in

the
low

frequency
range

to
be

able
to

detectthem
us-

ing
a

gyroscope,for
exam

ple
railw

ay
station,shopping

m
all,highw

ay,and
bus.

This
m

ay
allow

an
attacker

to
leak

m
ore

inform
ation

on
the

victim
userby

gaining
in-

dications
ofthe

user’s
w

hereabouts.

6
D

efenses

Letus
discuss

som
e

w
ays

to
m

itigate
the

potentialrisks.
A

s
itis

often
the

case,a
secure

design
w

ould
require

an

15A
sw

e
have

show
n,the

sam
pling

rate
available

on
certain

brow
sers

is
m

uch
low

er
than

the
m

axim
um

sam
pling

rate
enabled

by
the

O
S.

H
ow

ever,this
is

an
application

levelconstraint.
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overall
consideration

of
the

w
hole

system
and

a
clear

definition
of

the
pow

er
of

the
attacker

against
w

hom
w

e
defend.

To
defend

againstan
attacker

thathas
only

user-levelaccess
to

the
device

(an
application

ora
w

eb-
site),

it
m

ight
be

enough
to

apply
low

-pass
filtering

to
the

raw
sam

ples
provided

by
the

gyroscope.
Judging

by
the

sam
pling

rate
available

for
B

link
and

W
ebK

itbased
brow

sers,itisenough
to

passfrequenciesin
the

range
0

–
20

H
z.Ifthisrate

isenough
form

ostofthe
applications,

the
filtering

can
be

done
by

the
driverorthe

O
S,subvert-

ing
any

attem
ptto

eavesdrop
on

higher
frequencies

that
revealinform

ation
aboutsurrounding

sounds.
In

case
a

certain
application

requires
an

unusually
high

sam
pling

rate,itshould
appearin

the
listofperm

issions
requested

by
that

application,or
require

an
explicit

authorization
by

the
user.

To
defend

againstattackers
w

ho
gain

root
access,this

kind
of

filtering
should

be
perform

ed
atthe

hardw
are

level,
not

being
subject

to
configuration.

O
f

course,itim
poses

a
restriction

on
the

sam
ple

rate
avail-

able
to

applications.
A

nother
possible

solution
is

som
e

kind
of

acoustic
m

asking.
It

can
be

applied
around

the
sensor

only,
or

possibly
on

the
case

ofthe
m

obile
device.

7
C

onclusion

W
e

show
thatthe

acoustic
signalm

easured
by

the
gyro-

scope
can

reveal
private

inform
ation

about
the

phone’s
environm

entsuch
as

w
ho

is
speaking

in
the

room
and,

to
som

e
extent,w

hatis
being

said.
W

e
use

signalpro-
cessing

and
m

achine
learning

to
analyze

speech
from

very
low

frequency
sam

ples.
W

ith
furtherw

ork
on

low
-

frequency
signalprocessing

ofthistype
itshould

be
pos-

sible
to

further
increase

the
quality

of
the

inform
ation

extracted
from

the
gyro.

This
w

ork
dem

onstrates
an

unexpected
threat

result-
ing

from
the

unm
itigated

accessto
the

gyro:applications
and

active
w

eb
contentrunning

on
the

phone
can

eaves-
drop

sound
signals,including

speech,in
the

vicinity
of

the
phone.

W
e

described
several

m
itigation

strategies.
Som

e
are

backw
ards

com
patible

forallbuta
very

sm
all

num
ber

of
applications

and
can

be
adopted

by
m

obile
hardw

are
vendors

to
block

this
threat.

A
generalconclusion

w
e

suggestfollow
ing

this
w

ork
is

thataccess
to

allsensors
should

be
controlled

by
the

perm
issionsfram

ew
ork,possibly

differentiating
betw

een
low

and
high

sam
pling

rates.
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w

ork
w
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opinions,
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aterialare
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of
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author(s)
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do

notnecessarily
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view
s

ofN
SF
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A

R
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A
Signal

reconstruction
from

R
ecurrent

N
on-U

niform
Sam

ples

H
ere

w
e

presentthe
derivation

ofthe
discrete-tim

e
inter-

polation
filtersused

in
ourim

plem
entation.The

notation
in

the
expressions

corresponds
to

the
notation

in
[28].

The
continuous

tim
e

expression
forthe

interpolation
fil-

ters
according

to
Eq.18

in
[28]is

given
by

h
p
(t)

=
a

p sinc ⇣
tT

⌘
N
�

1

’q=
0,q6=

p sin  
p
�t+

tp �
tq �

T

!

W
e

then
sam

ple
this

expression
attim

es
t
=

nT
Q
�

tp
and

calculate
the

filter
coefficients

for
48

taps.
G

iven
these

filters,
the

reconstruction
process

consists
of

up-
sam

pling
the

inputsignalsby
factorN

,w
here

N
=

T
/T

Q
is

the
num

ber
of

A
D

C
s,filtering

and
sum

m
ation

of
the

outputs
ofallfilters

(as
show

n
in

Figure
8).

B
C

ode
for

sam
pling

a
gyroscope

via
a

H
T

M
L

w
eb-page

Fora
w

eb
page

to
sam

ple
a

gyro
the

D
eviceM

otion
class

needs
to

be
utilized.

In
the

follow
ing

w
e

included
a

JavaScriptsnippetthatillustrates
this:
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if
(w

indow
.D

eviceM
otionE

vent)
{

w
indow

.ad
d

E
v

en
tL

isten
er(

’d
ev

icem
o

tio
n

’
,

fu
n

ctio
n

(
ev

en
t)

{
var

r
=

ev
en

t.ro
tatio

n
R

ate
;

if
(

r!=
n

u
ll

)
{

co
n

so
le

.log
(

’R
o

tatio
n

at
[x

,y
,z

]
is

:
[

’
+

r
.alp

h
a+

’
,’+

r
.b

eta+
’

,’+
r

.gam
m

a+
’]\

n
’);

}
}

}

Figure
9

depictsm
easurem

entsofthe
above

code
run-

ning
on

Firefox
(A

ndroid)w
hile

sam
pling

an
audio

chirp
50

–
100

H
z.

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

2 4 6 8

1
0

1
2

F
re

q
u
e
n
cy (H

z)

Time

Figure
9:

R
ecording

audio
at

200
H

z
using

JavaScript
code

on
a

w
eb-page

accessed
from

the
Firefox

brow
ser

forA
ndroid.

C
G

yroscope
rate

lim
itation

on
A

ndroid

H
ere

w
e

see
a

code
snippet

from
the

Invensense
driver

for
A

ndroid,
taken

from
hardw

are/in-
vensense/65xx/libsensors

iio/M
PLSensor.cpp.

The
O

S
is

enforcing
a

rate
of200

H
z.

sta
tic

in
t

h
ertz

req
u

est
=

200;
#

d
efin

e
D

EFA
U

LT
M

PL
G

Y
R

O
R

A
TE

(20000L
)

//us
...
#

d
efin

e
D

EFA
U

LT
H

W
G

Y
RO

RA
TE

(1
0

0
)

//H
z

#
d

efin
e

D
EFA

U
LT

H
W

A
C

C
EL

R
A

TE
(2

0
)

//m
s

...
/⇤

co
n

vert
ns

to
hardw

are
u

n
its

⇤
/

#
d

efin
e

H
W

G
Y

R
O

R
A

TE
N

S
(1000000000LL

/
rate

req
u

est)
//

to
H

z
#

d
efin

e
H

W
A

C
C

EL
R

A
TE

N
S

(
rate

req
u

est
/

(1000000L
))

//
to

m
s

...
/⇤

co
n

vert
H

z
to

hardw
are

u
n

its
⇤

/
#

d
efin

e
H

W
G

Y
R

O
R

A
TE

H
Z

(
h

ertz
req

u
est)

#
d

efin
e

H
W

A
C

C
EL

R
A

TE
H

Z
(1000

/
h

ertz
req

u
est)

D
C

ode
R

elease

W
e

provide
the

source
code

of
the

A
ndroid

applica-
tion

w
e

used
for

recording
the

sensor
m

easurem
ents,

as
w

ell
as

the
M

atlab
code

w
e

used
for

analyzing
the

data
and

training
and

testing
of

the
speech

recognition
algorithm

s.
W

e
also

provide
the

gyroscope
recordings

used
for

the
evaluation

of
our

m
ethod.

The
code

and
data

can
be

dow
nloaded

from
the

project
w

ebsite
at

h
t
t
p
:
/
/
c
r
y
p
t
o.
s
t
a
n
f
o
r
d.
e
d
u
/
g
y
r
o
p
h
o
n
e.

In
addi-

tion,w
e

provide
a

w
eb

page
thatrecordsgyroscope

m
ea-

surem
ents

ifaccessed
from

a
device

thatsupports
it.
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Overview

Introduction

Financial fraud accounts for over $50 billion dollars

Fraud is a highly heterogeneous field with multiple subfields
Bank fraud
Insurance fraud
Securities and commodities fraud
Corporate fraud

Research methods into fraud detection overlaps well with data mining
for cyber security

Classification
Clustering
Prediction
Outlier detection
Regression
Visualization
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Overview

State of the art

Focus of published articles by field [1]
Credit card fraud 14.3%
Money laundering 2.0%
Healthcare insurance fraud 10.2%
Automobile insurance fraud 34.7%
Corporate fraud 34.7%

Focus of published articles by method [1]
Classification 61.2%
Clustering 6.1%
Prediction 6.1%
Outlier detection 2.0%
Regression 16.3%
Visualization 2.0%
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Case study 1

Case study 1: Detection of 10-K fraud

Model based o↵ of senior management’s knowledge of fraud (i.e.
Enron) [2]

Analysis focused on Management’s Discussion and Analysis (MDA) of
the 10-k filing.

NLP feature processing

Feature reduction via SVD

Clustering
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Case study 1

Feature processing

Convert all MDAs’ to raw text

Stem all words but di↵erentiate parts of speech

Bin words + parts of speech into synonyms via SAS Enterprise Miner

Treat bins as features and perform SVD on term data (essentially
PCA without mean subtraction)
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Case study 1

Clustering algorithm

Tried expectation maximization to no avail

Hierarchical clustering performed much better

Documents stabilized into two clusters of fraud and no fraud
irrespective of allowed maximum clusters(5, 10, and 40 tried)
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Case study 1

Results

95.6% training accuracy

Validation Fraud MDA: 10 Correct — 1 Wrong

Validation Non-Fraud MDA: 16 Correct — 4 Wrong

Impressive results given simplicity of model
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Case study 2

Case study 2: Credit card fraud detection with Hidden
Markov model [3]

Online method for fraud detection

Low penalty of false negative, assumed patrons would be asked a
credit question
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Case study 2

Model

Assume HMM have observables Ol ,Om,Oh which are the price bins
of the purchases

1) Cluster the users into low, medium, high spending patterns

2) Train a HMM for each spending category with EM

3) Form running window on customers’ purchase histories

4) Calculate �’s in probabilities of emission between running window
updates

5) Threshold on large �’s for rejection/acceptance
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Case study 2

Results

Paper did not provide a results table
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Conclusions

Conclusions

Fraud detection spans multiple subfields which pose unique problems

Fraud detection can be used in realtime detection of financial fraud
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