

CS259D: Data Mining for CyberSecurity

### Outline

- Introduction
- Challenges with using ML
- Guidelines for using ML
- Conclusions



- Misuse detection
  - Exact descriptions of known bad behavior
- Anomaly detection
  - Deviations from profiles of normal behavior
  - First proposed in 1987
     by Dorothy Denning (Stanford Research Institute)



# Why ML for security: Attack landscape

- Attacks sophistication
  - 403M new variants of malware created in 2011
  - 100K unique malware samples daily in 2012 Q1
- Required attacker knowledge decreasing
- Highly motivated attackers



# Why ML for security: Reactive defense failing

| Median time between breach and awareness | 300-400+ days                    |
|------------------------------------------|----------------------------------|
| Duration of zero-day attacks             | up to 30 months, median 8 months |
| % of attacks discovered by a third party | 61%                              |
| % of businesses that share breach info   | 2-3%                             |

#### ML success in other domains

- Product recommendations
  - Amazon, Netflix
- Optical character recognition
  - Google
- Natural language translation
  - Google, Microsoft
- Spam detection
  - Google, Yahoo, Microsoft, Facebook, Twitter

#### **Fact**

- Almost all NIDS systems used in operational environments are misusebased
  - Despite lots of research on anomaly detection
  - Despite appeal of anomaly detection to find new attacks
  - Despite success of ML in other domains

# Challenges

- Outlier detection
- High cost of errors
- Lack of appropriate training data
- Interpretation of results
- Variability in network traffic
- Adaptive adversaries
- Evaluation difficulties

## Challenge: Outlier detection

|                  | Classification                    | Outlier detection         |
|------------------|-----------------------------------|---------------------------|
| Training samples | Many from both classes            | Almost all from one class |
| Required quality | Enough to distinguish two classes | Perfect model of normal   |

- Premise: Anomaly detection can find novel attacks
- Fact: ML is better at finding similar patterns than at finding outliers

  Example: Recommend similar products; similarity: products purchased together
- Conclusion: ML is better for finding variants of known attacks

# Challenge: Outlier detection

- Underlying assumptions
  - Malicious activity is anomalous
  - Anomalies correspond to malicious activity
- Do these assumptions hold?
  - Former employee requests authorization code
    - Account revocation bug? Insider threat?
    - Username typo
  - User authentication fails 10K times
    - Brute force attack?
    - User changed password, forgot to update script

## Challenge: High cost of errors

|                        | Cost of False Negatives        | Cost of False<br>Positives         |
|------------------------|--------------------------------|------------------------------------|
| Product recommendation | Low: potential missed sales    | Low: continue shopping             |
| Spam detection         | Low: spam finding way to inbox | High: missed important email       |
| Intrusion detection    | High: Arbitrary damage         | High: wasted precious analyst time |

#### Post-processing:

- ✓ Spelling/grammar checkers to clean up results
- ✓ Proofreading: Much easier than verifying a network intrusion

# Thought experiment

#### Assume:

- Breathalyzer gets the answer right 90% of the time
- It detects a driver as drunk

#### Question:

 What is the probability the driver is actually drunk?



# Base rate fallacy



# Challenge: Lack of appropriate training data

- Attack free data hard to obtain
- Labeled data expensive to obtain

|                        | Training     |
|------------------------|--------------|
| Product recommendation | Supervised   |
| Spam detection         | Supervised   |
| Intrusion detection    | Unsupervised |

### Challenge: Interpretation of results

|                        | Goal                   |
|------------------------|------------------------|
| Product recommendation | Classify               |
| Spam detection         | Classify               |
| Intrusion detection    | Classify and Interpret |

- Network operator needs actionable reports
  - What does the anomaly mean?
  - Abnormal activity vs. Attack
  - Incorporation of site-specific security policies
  - Relation between features of anomaly detection & semantics of environment

# Challenge: Variability in network traffic

- Variability across all layers of the network
  - Even most basic characteristics: bandwidth, duration of connections, application mix
- Large bursts of activity



#### Challenge: Variability in network traffic

- What is a stable notion of normality?
- Anomalies ≠ Attacks
- One solution: Reduced granularity
  - Example: Time-of-Day, Day-of-Week
  - Pro: More stable
  - Con: Reduced visibility

### Challenge: Adaptive adversaries

- Adversaries adapt
  - ML assumptions do not necessarily hold
    - I.I.D, stationary distributions, linear separability, etc.
- ML algorithm itself can be an attack target
  - Mistraining, evasion

# Challenge: Evaluation

- Difficulties with data
  - Data's sensitive nature
  - Lack of appropriate public data
    - Automated translation: European Union documents
  - Simulation
    - Capturing characteristics of real data
    - Capturing novel attack detection
  - Anonymization
    - Fear of de-anonymization
    - Removing features of interest to anomaly detection

# Challenge: Evaluation

- Interpreting the results
  - "HTTP traffic of host did not match profile"
  - Contrast with spam detection: Little room for interpretation
- Adversarial environment
  - Contrast with product recommendation: Little incentive to mislead the recommendation system

#### Root cause

- Using tools borrowed from ML in inappropriate ways
- Goal: Effective adoption of ML for largescale operational environments
  - Not a Black box approach
  - Crisp definition of context
  - Understanding semantics of detection

#### Guidelines

- Understand the threat model
- Keep the scope narrow
- Reduce the costs
- Use secure ML
- Evaluation
- Gain insights to the problem space

#### Guideline: Understand the threat model

- What kind of target environment?
  - Academic vs enterprise; small vs large/backbone
- Cost of missed attacks
  - Security demands, other deployed detectors
- Attackers' skills and resources
  - Targeted vs background radiation
- Risk posed by evasion

### Guideline: Keep the scope narrow

- What are the specific attacks to detect?
- Choose the right tool for the task
  - ML not a silver bullet
  - Common pitfall: Start with intention to use
     ML or even worse a particular ML tool
  - No Free Lunch Theorem
- Identify the appropriate features

## Example

- Features: Byte frequencies in packet payloads
- Algorithm: Detect packets with anomalous frequency patterns
- Assumption: Attack payloads have different payload byte frequencies
- Question: Where does this assumption come from?

## Example

- Threat model: Web-based attacks using input parameters to web applications
- Why anomaly detection: Attacks share conceptual similarities, yet different enough in their specifics for signatures
- Data:
  - Successful GET requests to CGI apps, from web server Access Logs
- Features:
  - · Length of attribute value, Character distribution of attribute value
- Why is this feature relevant
  - Length: Buffer overflow needs to send shellcode and padding
  - Character distribution: Directory traversal uses too many "." & "/"

#### Guideline: Reduce the costs

- Reduce the system's scope
- Classification over outlier detection
- Aggregate features over suitable intervals
- Post-process the alerts
- Provide meta-information to analyst to speed up inspection

#### Guideline: Use secure ML

"If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle."

- Sun Tzu, The Art of War



#### Guideline: Use secure ML



#### Guideline: Evaluation

- Develop insight into anomaly detection system's capabilities
  - What can/can't it detect? Why?

### Guideline: Evaluation





# Guideline: Gain insights to the problem space

- ML as means to identify important features
- Use those features to build non-ML detectors
- ML as a means to an end

#### Reference

- "Outside the closed world: On using machine learning for network intrusion detection", Sommer-Paxson, 2010
- "Challenging the Anomaly Detection Paradigm: A Provocative Discussion", Gates-Taylor, 2007
- "The Base-Rate Fallacy and Its Implications for the Difficulty of Intrusion Detection", Axelsson, 1999