CS259D: Data Mining for Cybersecurity

One-class classification

- Most samples from target class
- Rejection rate
 - % of training data points classified as outliers
 - Allows for presence of noise
 - Tolerable false positive rate

One-class SVM

- Hyperplane separating training samples from the feature space origin
 - May not always exist in original feature space
 - Feature space mapped to a Kernel space
 - With Gaussian kernel, hyperplane always exists

$$K(x,y) = \Phi(x) \cdot \Phi(y) = \exp(-\frac{\|x - y\|^2}{2s})$$

$$\min_{w,\xi,\rho} (\frac{1}{2} \|w\|^2 - \rho + \frac{1}{hC} \sum_{i=1}^h \xi_i)$$

$$w \cdot \Phi(xi) \ge \rho - \xi i \qquad (1 \le i \le h)$$

$$f_{svc}(z) = I(\sum_i \alpha_i K(x_i, z) \ge \rho); \qquad \sum_{i=1}^h \alpha_i = 1$$

Class-conditional probability formulation

Conditional probability representation:

$$p(x \mid w_t) = \frac{1}{(2\pi s)^{d/2}} \sum_{i=1}^{n} \alpha_i K(x, x_i)$$

- This is actually a distribution
- Classify as normal if:

$$p(x \mid w_t) \ge \rho'; \quad \rho' = \rho/(2\pi s)^{d/2}$$

Fusion rules

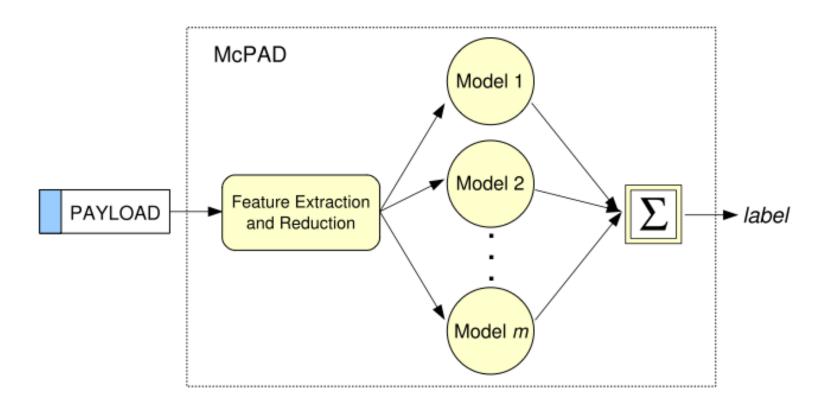
- Min, Max, Mean, Product
- Applied to a-posteriori class probabilities under different models: $P_i(w_i \mid x)$
- Assuming uniform distribution for outliers can turn these rules into class-conditional probabilities

Combining one-class SVM classifiers

Average:

$$y_{avg}(x) = \frac{1}{L} \sum_{i=1}^{L} p_i(x \mid w_t)$$
$$y_{avg}(x) < \theta \Rightarrow outlier$$

Product:


$$y_{prod}(x) = \prod_{i=1}^{L} p_i(x \mid w_t)$$

- Min and Max rules similarly defined
- Majority voting rule: Class voted for by majority of classifiers

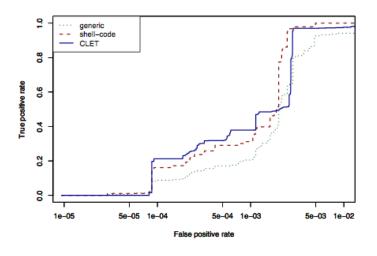
McPAD: Multiple Classifier System for Accurate Payload-based Anomaly Detection

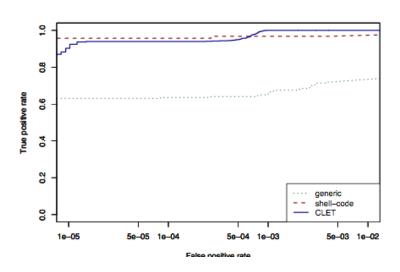
- Features (2,-grams): frequencies of bytes that are v bytes apart
- 256² features irrespective of v
- Computed using a sliding window of size v
 +2
 - Marginalized distribution
- v=0 is the 2-gram model of PAYL
- Combination to reconstruct sequence information
- Feature clustering to reduce dimension

McPAD architecture

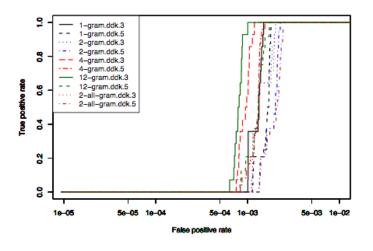
Experiments: Parameters

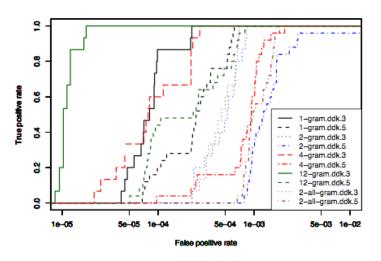
γ	0.5		
ν	0-10		
Feature Clusters (k)	10, 20, 40, 80, 160		
Desired FP Rate	10%, 5%, 2%, 1%, 0.5%, 0.2%		
Desired I'I Itale	0.1%, 0.05%, 0.02%, 0.01%, 0.001%		


Attacks


- Generic attacks
- Shell-code attacks
- CLET attacks
- PBA attacks

Results


	Maj. Vot.	Avg. Prob.	Prod. Prob.	Min. Prob.	Max. Prob.	
Generic Attacks						
k=10	0.83501	0.86331	0.8633	0.87187	0.76765	
k=20	0.8366	0.8613	0.86135	0.86882	0.7492	
k=40	0.8366	0.86312	0.86407	0.87783	0.77834	
k=80	0.84778	0.85948	0.8595	0.88594	0.80212	
k=160	0.87016	0.8884	0.88828	0.87131	0.69164	
Shell-code Attacks						
k=10	0.98632	0.99544	0.99543	0.99323	0.94105	
k=20	0.98758	0.99689	0.9969	0.99361	0.94685	
k=40	0.98903	0.99827	0.99826	0.99417	0.97585	
k=80	0.99613	0.99874	0.99875	0.9965	0.98666	
k=160	0.98723	0.99785	0.99775	0.99709	0.76661	
CLET Attacks						
k=10	0.99776	0.99854	0.99854	0.99866	0.9589	
k=20	0.99778	0.99839	0.99839	0.99925	0.969	
k=40	0.99757	0.99815	0.99815	0.99908	0.98624	
k=80	0.99773	0.99785	0.9979	0.99925	0.99669	
k=160	0.99737	0.9985	0.99844	0.99913	0.83275	


Results

Results

References

 "McPAD: A Multiple Classifier System for Accurate Payload-Based Anomaly Detection", Perdisci et al, 2009