CS259D: Data Mining for Cybersecurity

Cybersecurity

 "Information security as applied to computing devices such as computers, smartphones, as well as computer networks..."

• Information Security (InfoSec): "practice of defending information from unauthorized access, use, disclosure, disruption, modification, perusal, inspection, recording, or destruction".

Information security goals

- C-I-A triad
 - Confidentiality
 - Unauthorized disclosure of information
 - Integrity
 - Unauthorized modification of information
 - Availability
 - Unauthorized withholding of information or resources
- Others
 - Privacy
 - Authenticity
 - Non-repudiation
 - Accountability
 - Auditability

Risk management: Controls

- Administrative
 - Policies, guidelines
 - Password policies
 - Payment Card Industry Data Security Standard (PCI DSS)
 - Principle of least privilege
- Physical
 - Doors, locks, etc.
 - Principle of separation of duties
- Logical
 - Use software and data

Preventive measures

- Protocols
 - Secure Socket Layer (SSL): source authentication
- Host-based protections
 - Secure operating systems, Patching
- Access control
 - Identification: username
 - Authentication: Something you know/have/are
 - Authorization: File permissions, Kerberos, Need-to-know principle

Preventive measures

- Firewalls
 - Control inter-network traffic (e.g., from/to internet)
- Security by design
 - Principle of least privilege, Code reviews, unit testing, Defense in depth
- Secure coding
 - Buffer overflows, Format string vulnerabilities,
 Code/Command injection

Why is prevention not enough?

- Inherent weaknesses in increasingly more complex systems/networks
 - Poor Design
 - Software and hardware
 - Example: sendmail (race condition vulnerability, buffer overflow, group permission vulnerability, etc.)
 - Poor Implementation
 - Security an afterthought
 - Lack of personnel experience/training
 - Poor system configuration
 - Example: default firewall configurations with open insecure ports
 - Poor Management
 - Inadequate policies/procedures

Why is prevention not enough?

- Tradeoff between security and usability
- Non-tech tradeoffs in system engineering
 - social, organizational, economic, regulatory, legal
- Cost of prevention

Vulnerabilities

- Backdoors
 - Kleptographic attack
 - Rootkit
- Denial of Service
 - Resource exhaustion
 - Attack amplifiers (e.g., poorly designed FTP, DNS)
 - Application or OS exploit
- Eavesdropping
 - Listening to private communication on network
 - Monitoring hardware electro-magnetic transmissions
- Exploits
 - Gain control of a computer system, allow privilege escalation, or denial of service attack
 - Used in Trojan horses, viruses
- Social Engineering
 - Humans: the weakest link in security

Attack categories

- Probe
 - Information gathering (1:1, 1:m, m:1, m:n modes)
 - IPSweep, portsweep, nmap, etc.
- Denial of Service (DoS)
 - TCP SYN flood, Ping of Death, smurf, neptune, etc.
- Remote to Local attacks (R2L)
 - Brute force/Dictionary attack, buffer overflow, unverified input attacks
 - Social engineering, Trojans
- User to Root attacks (U2R)
 - Buffer overflow, rootkit, etc.
- Infections
 - Trojans/worms/viruses
 - Spreading attacks

Basic attack steps

- Prepare
 - Gather info:Valid IP addresses & ports, OS, software type
 & version
- Exploit
- Leave behind
 - Backdoors
- Clean up
 - Restart crashed daemons, clean registry/log files
- Variable order and duration
 - Attacker's skill level
 - Type of vulnerability to exploit
 - Prior knowledge
 - Starting location of attacker

Attack tools

- Information gathering
 - Sniffing: capture packets traversing network
 - Tcpdump, Ethereal, Gulp, Net2pcap, Dsniff, etc.
 - Network mapping/scanning/fingerprinting: hosts/IPs/ports, protocol details
 - Nmap, Amap, Vmap, Ttlscan, P0f, Xprobe, Queso, etc.
- Attack launching
 - Trojans
 - Danger, NukeNabbler, AIMSpy, NetSpy, etc.
 - DoS attacks
 - Targa, Burbonic, HOIC, LOIC, etc.
 - Packet forging tools
 - Packeth, Packit, Packet Excalibur, Nemesis, Tcpinject, Libnet, SendIP, etc.
 - Application layer tools
 - Code Red Worm, Nimda Worm, AppDDoS, RefRef, etc.
 - User attack tools
 - Ntfsdos, Yaga, etc.

Failure of prevention

- Attacking constantly getting easier
 - Required expertise decreasing
 - Quality of attack tools increasing

Failure of prevention

- Attack mechanisms constantly evolving/ mutating
- New connectivity options bypassing perimeter security
- Preventive measures getting obsolete
 - Polymorphic viruses resistant to current antivirus

Security measures

Defense in depth

- Layered approach
 - Separate systems into network sections
 - Place firewalls at section boundaries
 - Border router between ISP and firewall to filter traffic
 - Switches on each section to make sniffing less effective
 - Encryption
- Last layer of defense
 - Detection

Detective security

- Ist Generation: Intrusion detection systems (IDS)
 - I00% protection/prevention impossible
 - Layered security
- 2nd Generation: Security information and event management (SIEM)
 - Correlate alerts from different intrusion detection sensors
 - Present actionable information to security analyst
- 3rd Generation: Big Data analytics for security
 - Contextual security intelligence
 - Long-term correlations

Why now?

- Attack landscape
 - Attacks increasingly more sophisticated
 - Required attacker knowledge going down
 - Highly motivated attackers
 - Attacker needs to succeed only once, defense needs to be right every single time
- Current detection techniques failing
 - Polymorphic malwares
 - Zero-day attacks
 - APTs
- Network perimeter dissolving
 - Mobile/BYOD
 - Cloud

Why now?

- Big Data technology enable storage and analysis of higher volumes & more types of data
- 2010 Verizon data breach investigation
 - In 86% of cases of breach, evidence was in the logs
 - Detection mechanisms failed to raise alerts
- How do we make sense of the data?

Attack landscape

"There are only two types of companies: those that have been hacked, and those that will be. Even that is merging into one category: those that have been hacked and will be again."

Robert Mueller FBI Director

Attackers and motivations

- Script-kiddies
 - Motivated by curiosity
- Cybercriminals
 - Motivated by profit
 - Typical demographics: east European, Brazilian
- Nation-state hackers
 - Motivated by power
 - Typical demographics: east Asian, middle eastern
- Hacktivists
 - Motivated by ideology
 - Typical demographics: north American, western European
- Cyber-mercenaries
 - Hired by to attack
- Insiders
 - Motivated by disgruntlement

Reactive defense

- Examples
 - Antivirus signatures for known malicious executables
 - Email filters for unwanted messages
 - Web filters for compromised websites
 - Sandboxes for malicious behaviors
- Median detection time between intrusion/breach to awareness of it: 300-400+ days
- Duration of zero-day attacks
 - 19 days to 30 months
 - Median of 8 months, Average of 10 months
- 61% of attacks discovered by a third party
- Businesses reluctant to disclose their breaches
 - Only 2%-30% do
- Porous perimeter
 - Cloud applications
 - Mobile/BYOD
 - Partner businesses

Explosion of malware

- 403 million new variants of malware created in 2011
- 100,000 unique malware samples collected daily by McAfee in 2012, Q1
- More than 100 million samples in McAfee's malware signature database by 2012 Q3
- Practically impossible to keep up with signatures

Targeted industries

Industry	% Advanced attacks
Aerospace and defense	17%
Energy, Oil & Gas	14%
Finance	11%
Computer software and hardware	8%
Legal and consulting services	7%
Media and Entertainment	7%
Telecommunications	6%
Pharmaceuticals	4%
Other	25%

Some recent attacks

- 2006: 10-20 TB data stolen from US NIPRNet Military Network
- 2007: Massive cyber-attack against Estonia
- 2008: ExxonMobil, ConocoPhillips, Marathon Oil; all unaware till alerted by FBI
- 2010:
 - Operation Aurora against Google & 20+ others, e.g., Yahoo, Morgan Stanley, Symantec, Northrop Grumman
 - Stuxnet: "The world's most advanced malware"
- 2011:
 - RSA SecurID breach, Lockheed martin attacked consequently
 - Comodo, DigiNotar certificate authorities breached
- 2012: Flame deemed most complex malware ever created, Red October
- 2013:
 - Adobe breach: I52 million customers' data including passwords stolen
 - Target breach: 40 million credit cards, 70 million addresses, phone numbers, etc, \$61M spent to respond to breach, costs potentially in \$Billions
- 2014:
 - eBay breach
 - Home Depot breach: 56 million credit and debit cards compromised
 - JPMorgan, 4 other banks: GBs of data including checking and savings account info stolen

Advanced Persistent Threats: APT

- Targeted attack against a high-value asset
- Low and slow
- Avoid alerts
 - Use stolen user credentials
 - Zero-day exploits
 - Low profile in network
 - Slow progress: Operating over months or years
 - Beyond limited correlation time windows of today's IDSs
- Multi-stage
 - Exploitation
 - Command and control
 - Lateral movement
 - Breach

Advanced Persistent Threats: APT

- Typical Goals
 - Steal intellectual property (IP)
 - Gain access to sensitive customer data
 - Access strategic business information
 - Financial gain, embarrassment, blackmail, data poisoning, illegal insider trading, disrupting organization's business
- Attackers
 - Well-funded
 - Highly skilled
 - Motivated
 - Targeted on specific data from specific organization

Administrativia

- Course URL: http://web.stanford.edu/class/cs259d/
- Instructor:
 - Bahman Bahmani
 - Email: bahman@cs
 - Office hours:TBD
- TA:
 - Dima Brezhnev
 - Email: brezhnev@cs
 - Office hours:TBD
- No textbook
- Guest speakers
- Week of October 13

Grading

- 4 Homework assignments
 - Individually or in pairs
 - Almost 2 weeks for each homework
 - Each 25% of the grade
 - Potential assignments:
 - Web attack detection
 - User profiling for authentication and authorization
 - Network profiling and intrusion detection
 - Botnet detection
 - Host-based insider threat detection
 - Deep packet inspection
 - Web proxy log analysis
 - Algorithmic alert correlation
- No exams
- No late days
- Honor Code

Detection Taxonomy

- Information source
- Analysis strategy
- Time aspects
- Activeness
- Continuality

Detection taxonomy: Information source

- Host-based
 - system calls, system logs
- Network-based
- Wireless Network
- Application logs
 - DB logs, web logs
- IDS sensor alerts
 - Lower level sensor alarms

Detection taxonomy: Detection strategy

- Misuse detection
 - Premise
 - Knowledge of attack patterns provided by human experts
 - Signature matching
 - Data mining using labeled data sets
 - Benefit: high accuracy in detecting known attacks
 - Drawbacks:
 - Ineffective against novel attacks
 - Signatures need updates with each new discovered attack
- Anomaly detection
 - Premise
 - Build profiles of normal behavior (users, hosts, networks)
 - Detect deviations from normal profiles
 - Benefit: detect novel attacks
 - Drawback: Possible high false alarm rate

Detection taxonomy: Time aspects

- Real-time
 - Analyze live data (e.g., session data)
 - Raise alert immediately if attack detected
- Offline
 - Analyze data offline
 - Useful for forensics

Detection taxonomy: Activeness

- Passive reaction
 - Only generate alarms
 - Benefit: Human in the loop
 - Drawback: Alert may go unnoticed
 - Example: Target breach
- Active response
 - Corrective response (e.g., reconfigure firewalls)
 - Proactive (e.g., log out attacker)
 - Benefit: Speed
 - Drawback: May turn into DoS attack against

Detection taxonomy: Continuality

- Continuous monitoring
 - Continuous real-time analysis
 - Collect information about actions immediately
 - Higher deployment effort
- Periodic analysis
 - Take periodic snapshots of the environment
 - Lower security: Exploitation between two snapshots

Example data mining method

- PageRank
 - Developed by founders of Google
 - Used for search ranking, recommendation systems, etc.

Example: Detect malware-infected hosts

- Build host-domain access graph from web proxy logs
- Seed the analysis using minimal ground truth
 - a blacklist & a whitelist of known bad & good sites
- Belief-propagation (PageRank-style): estimate likelihood of a host/domain to be malicious
- An instance of semi-supervised learning

Example data mining methods

- Hubs and Authorities
 - Similar to PageRank
- Clustering

Example: P2P botnet detection using netflow modeling

- Represent each host (IP address) as a node in a graph
- Edge (A,B) if & only if a flow from A to B exists
- Compute Hubs and Authorities scores
- Bots show similar hub-authority characteristics
- Do clustering in the 2-dimensional space (hub, authority)

Example data mining method

Frequent itemset mining

Example: Beaconing pattern detection

- Web proxy alerts repeated access to suspicious IP
- Perform frequent itemset mining on sets of events prior to those IP accesses
- Frequent authentications to critical DB detected

Example: Behavior profiling for APT detection

- Anomaly sensors to detect specific deviations
 - Unusual connections from a host to external IPs
 - Profile set of machines each user logs into
 - Model each user's normal working hours
 - Model flow of data between internal hosts (e.g., to detect staging servers before data exfiltration)

Syllabus (tentative)

- Introduction: Introduction to Information Security, Introduction to Data Mining for Information Security
- Malware Detection: Obfuscation, Polymorphism, Payload-based detection of worms, Botnet detection/takedown
- **Network Intrusion Detection:** Signature-based solutions (Snort, etc.), Data-mining-based solutions (supervised and unsupervised), Deep packet inspection
- Host Intrusion Detection: Analysis of shell command sequences, system call sequences, and audit trails, Masquerader/Impersonator/Insider threat detection
- **Web Security:** Anomaly detection of web-based attacks using web server logs, Anomaly detection in web proxy logs
- **Email:** Spam detection, Phishing detection
- Social network security: Detecting compromised accounts, detecting social network spam
- Authentication: Anomaly detection of Single Sign On (Kerberos, Active Directory),
 Detecting Pass-the-Hash and Pass-the-Ticket attacks
- Automated correlation: Attack trees, Building attack scenarios from individual alerts
- Issues: Privacy issues, Adversarial machine learning (use of machine learning by attackers, how to make ML algorithms robust/secure against adversaries)
- Other potential topics: Fraud detection, IoT/Infrastructure security, Mobile/Wireless security

Job market

- Security analyst
- Security engineers
- Security architect
- Security administrator
- Chief Information Security Officer
- Security consultant
- Security Data Scientist