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Why security at Google?

● Hundreds of millions of users trust Google with their data
● Billions of users trust Google search
● Massive computing footprint
● All manner of adversaries, from “script kiddies” to nation states
● All manner of attacks

○ From DDoS to politically-motivated targeting
○ Big range of frequency, sophistication, severity

⇒  Vast range of security problems



Large security team

● Product consulting: design to launch to bug bounty
● Infrastructure: auth*, systems hardening, logs
● Operations: vulnerability management, detection, response
● Threat intelligence: malware, indicators
● Privacy: special focus on unauthorized access to end-user data



Data mining used pervasively

Some examples:

● Account hijacking detection
● Click fraud detection
● DoS detection
● Infrastructure compromise detection



Data mining for monitoring and analysis

My team, secmon-tools, focuses on this

● Monitoring
○ Automated, continuous, feeds data to analysts
○ Things to look for: intrusion, exfiltration, privacy violation, ...

● Analysis
○ Not necessarily continuous
○ Often initiated by humans
○ Applications: threat intelligence, incident investigation, cleanup, ...

Important: “actors” are Google employees, not end users



Caution: security is a process

Any technology (data mining, etc.) is only a tool, not a solution

● User education (social engineering is surprisingly successful)
● System hardening (auth, secure engineering, timely patches, ...)
● Operational procedures

○ Adapting to growth (new hires / platforms / acquisitions)
○ Maintaining alertness (in the absence of major incidents)
○ Gathering intelligence
○ Escalation and response playbooks
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High-level view of a monitoring pipeline

Auth logs, 
system logs, 
data access 

logs, network 
traces, ...

Log 
normalization

Security Analyst,
aka “Ninja”

Badness 
detection™

Latency range: seconds to hours



Some guiding principles

● False negatives are very expensive
○ Could cause arbitrary damage to our users

● False positives are expensive too
○ Analyst time is valuable

● Alerts should make sense to a human
○ The analyst (security expert) is key
○ False positives + inexplicable results → signal fatigue



Log normalization is underappreciated

Analysis capability is limited by quality of underlying data

● Timestamps with missing or incorrect timezone
● Different names for the same thing: “GOOGLE\\maxp” vs “maxp.

corp.google.com”
● One event spread across multiple log lines: e.g., sshd and PAM 

entries during an ssh login

Sounds trivial, but takes a lot of engineering to get right and maintain



Two forms of “badness detection”™

1. Statistical (e.g., machine learning)

2. Rule-based (e.g., expert system)

Feature 
extraction

Anomaly 
detection 
algorithms

Alerts

Feature 
engineering

Rules engine

Rule 
definition

Alerts

Typically performed by security analysts

Typically performed by software engineers

✘ poor results for us

✔ good results for us



Not easy to model attacks
● Huge attack space
● Few training examples

Intuition: model normal behavior, find outliers
● Pro: many training examples
● Pro: theoretically, ability to detect new, 

unanticipated attacks
● Cons: noisy and hard to interpret

Statistical anomaly detection



Some reasons to care
● Employee account hijacked by malware?
● Intentional malicious activity?

Goal: model actor behavior, find anomalies

What do we need to do
● Identify useful features
● Model normalcy
● Find outliers

Example: detecting anomalous actor behavior



● Partition logs by actor and time
● Represent (actor, time) pairs as vectors of binary variables

Feature extraction: modeling actors

Alice, 10-Jun

Alice, 11-Jun

Bob, 9-Aug

VPN login

ssh x.corp

door SFO-23

http://phish.ru



Modeling normalcy and finding outliers

Need to find low-probability features or combinations of features
Many approaches possible. Some examples:

● Boltzmann machines, weighted histograms
⇒ probability model for features or pairs of features

● Nearest neighbors
⇒ similarity metric between actors

● “Strange pairs”
⇒ features that rarely appear together



Intuition: find users that are not very similar to any other users
● Look at fraction of shared features
● Compare to users in same group / department / etc.

Variant: compare a user to her past
● “Neighbors” are feature vectors in user’s past
● Identify changes in behavior

Modeling normalcy: nearest neighbors



Intuition: identify users with pairs of features that occur frequently 
individually but rarely together

E.g., “accessed source code” and “works in HR”.

● Assume independence of features. Expect common features to 
occur frequently together

● Find ones that don’t
● User’s anomaly score is the sum of the “strangeness” of all her 

variable pairs

Modeling normalcy: strange pairs



How well does all this modeling work?

Not well enough in our case, it turns out.

Top ~1% of users by anomaly score includes all “bad actors”
But ~50K Google employees → top 1% ≈ 500 users!

And, crucially, anomaly scores are difficult to explain to analysts
⇒ signal fatigue!



Important: not all anomalies are attacks

Former employee requests an authorization token
● Account revocation bug? Attack?
● Nope: username typo

Actor fails authentication 20K times
● Brute-force attack?
● Nope: actor changed password, forgot to update script

Email address in RPC to location service
● Privacy violation?
● Nope: address is “test@123.com”



Why is statistical anomaly detection for security hard?

Learning Cost of error
FP / FN Goal Attacker

 Anomaly detection Unsupervised Medium / High Classify
& explain Adaptive

 Spam detection Supervised High / Low Classify Adaptive

 Product
 recommendation Supervised Low / Low Classify N/A

For more on this topic, consider “On Using Machine Learning For Network 
Intrusion Detection”, Sommer and Paxson, Oakland 2010.



Two forms of “badness detection”™

1. Statistical (e.g., machine learning)

2. Rule-based (e.g., expert system)

Feature 
extraction

Anomaly 
detection 
algorithms

Alerts

Feature 
engineering

Rules engine

Rule 
definition

Alerts

Typically performed by security analysts

Typically performed by software engineers



An alternative: rule-based detection

Manually created rules
→ Characterize attacks or deviations, not normalcy

● Locality: each rule covers a small set of logs and features
● Explainability: direct connection between rules and alerts
● Specificity: make better use of analysts’ expertise



Example rule ideas

● “Alert if a host appears to be ssh probing”

● “Alert if a host connects to a suspicious IP shortly after 
downloading a PDF”

Encode security experts’ knowledge into many such rules



Rule quality

Can have high S/N ratio, but brittle if written carelessly

Best rules cannot be trivially disabled by changing a parameter
Context is valuable: conjunction of terms, temporal logic, etc.

Consider previous examples
● Former employee login: measure Levenshtein distance
● Brute force failures: consider network connection history
● Email address privacy: use dynamic whitelist



How to implement the rules?

● Ad-hoc code (e.g., Python, C++)
○ Pros: it can do anything
○ Cons: complex, hard to maintain

● SQL database
○ Pros: easier, more expressive
○ Cons: problems with temporal logic; poor match for log workloads

● Domain specific language for processing streaming logs
○ Pros: sliding time windows; temporal logic
○ Cons: implementation is not easy



Curio, a system for continuous data processing

● Built on top of Dremel (Melnik et al., VLDB 2010)
● Aggregates streams into frames, collections of records 

corresponding to a time interval
● Enables temporal analysis and correlation

Stream frame

Time

Log data

Curio stream
Aggregation, filtering, joins ...

http://research.google.com/pubs/pub36632.html


Curio architecture

Normalized logs
Curio runtime

Curio streams

Alerting 
systems

Curio stream 
definitions 

(rules)

Non-log 
data



Nice Curio features

Scalability
● Shards to very large queries

Resilience
● Handles job failures seamlessly
● Adapts to source log delays

Integration with reporting systems
● Sends alerts to the right places automatically



Alert if host contacts “suspicious” IP within 1 minute of opening PDF

Ground truth:
● host execution logs
● network logs

Quick case study: detect PDF spawning malware



host log

network log

IP x contacts 
suspicious host

IP x opens PDF reader

1:34:17

1:34:18

1:35:18
Stream frame for
[1:35:17, 1:35:18) 

Quick case study: detect PDF spawning malware



Adapting to log latency

log recorded

wallclock time24 hours

IP x contacts suspicious host

IP x opens PDF reader

log missing

host log*

network log

*Missing entries because x unreachable



network logs host logs

24 hours 0

Maintain a histogram of:
                            delay = (event in logs) - (event time)
Use it to decide when to advance each stream
Results available as soon as data is “reasonably” complete

24 hours 0

Adapting to log latency



How well does this all work?

Cautiously optimistic
● Many streams and signals
● Knowledge encoded from scores of analysts
● Seems effective, but beware unknown unknowns

Quality measures are crucial
● Well-defined process for launching new signals 
● End-to-end tests to detect “log rot”
● Open-ended penetration tests
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It’s not all about automated detection. Skilled analysts are a valuable 
resource: give them the tools to use their time effectively

Data mining for security analysis

Disk images … 
network logs … 

signals … 

Questions about 
data

Data analysis 
system

Analyst



Causation How did the attacker get root?

Consequence What was the effect of running the script?

Correlation Which signals fired simultaneously?

Summarization What was the user doing last night?

Questions an analyst might ask

time

time



Broad spectrum of tools

● Looking for causes and effects
○ graph traversal

● Extracting meaning from noisy data
○ graph summarization
○ clustering

● Triaging malware
○ classification

Statistical (as well as graph-based) approaches are effective in this 
problem domain
Let’s look at three examples



Example 1: graph traversal for incident investigation

Some questions to answer:
● Were any machines affected by watering hole X?
● User U downloaded malware. What should be cleaned up?

Given a graph representation of all relevant logs, can be framed as a 
large-scale graph search problem



Graph creation

Log lines induce graph components

Edges annotated with times and semantics

Many different log sources in one huge (peta-scale) graph

Data normalization again an issue: “maxp” vs “maxp@google”, etc.

Oct 20 9:36:30 foo.corp sshd[29661]: maxp 
login from 10.1.12.12 port 65298

maxp

foo.corp

10.1.12.2 connect @9:36

login @9:36

user  @9:36



Sample graph query

Given watering hole hostname X ...
→ IPs that it resolved to

→ internal IPs that talked to them
→ machines (assets) those internal IPs belonged to

→ users who used those machines
→ other machines those users have logged into

Hours of manual research replaced by a ~10-second query



Sample graph query: time constraints

malware 
hostname

possible 
malware IP1

possible 
malware IP2

IP out of 
time range

corp IP1

corp IP2

corp IP out of 
time range

corp host2

corp host1

corp host3

user1

user2

user out of 
time range

Search for potentially compromised users during a time interval



Some implementation insights

Keep the graph as close as possible to ground truth
● Limit data pre-processing
● Global graph corrections are expensive 

Most of the work is in query encoding and execution
● Guiding and constraining the search is a challenge
● Some edges may invalidate others (e.g., DHCP leases)
● Parallelism is your friend



Broad spectrum of tools

● Looking for causes and effects
○ graph traversal

● Extracting meaning from noisy data
○ graph summarization
○ clustering

● Triaging malware
○ classification



Example 2: log summarization via graph transformation

Many logs are so verbose that humans cannot make sense of them.

“Can’t see the forest for the trees”

Example: Plaso (https://github.com/log2timeline/plaso)
● Open-source forensics tool
● Produces detailed timeline of all artifacts from disk image
● Useful when investigating a compromise.

But...

https://github.com/log2timeline/plaso


Plaso logs look like this...

Timestamp Desc Message/Source

2013-07-15T18:29:16.382852 Page 
Visited

https://www.google.com/search?
q=kristinn+gudjonsson&oq=kristinn+gudjonsson&aqs=chrome.0.57.2638
j0&sourceid=chrome&ie=UTF-8 (kristinn gudjonsson - Google Search) [count: 0] 
Host: www.google.com (URL not typed directly - no typed count)
/Users/demouser/Library/Application Support/Google/Chrome/Default/History

2013-07-15T18:29:42.966055 Creation 
Time

MessageID: 1428 Level: NOTICE (5) User ID: 501 Group ID: 20 Read User: ALL 
Read Group: 80 Host: Macintosh.local Sender: UserEventAgent Facility: 
messagetracer Message: com.apple.message.domain [com.apple.usage.app 
_activetime: com.apple.message.signature][loginwindow: com.apple.message.sign 
ature2][com.apple.loginwindow ||| 8.2 (8.2): com.apple.message.value][38: com.ap 
ple.message.value2][NO: com.apple.message.summarize],asl_log,
/private/var/log/DiagnosticMessages/2013.07.15.asl,Document Printed,1,369849



… and there are many of them!

Compressed Plaso dump 67MB

Number of Events

Total 1,118,757

01 Jan to 30 July 2013 710,812

15 July, 6:27PM to 6:59PM 8,140



● Granularity
● Semantics (e.g., time order vs ownership)

Granularity

Type of inform
ation

Ideally, multiple perspectives on log data 



As with graph traversal, convert logs to a graph

But then don’t stop at ground truth

Transform (minimize) the graph to extract meaning

Log summarization



Relationships define edges

Timestamp Desc Message/Source

2013-07-15T18:29:16.382852 Page 
Visited

http://kiddi.biz/something.html (Some Randomly Generated Web Site) [count: 0] 
Host: kiddi.biz Visit from: http://kiddi.biz/ (Kristinn) (URL not typed directly - no 
typed count)
/Users/demouser/Library/Application Support/Google/Chrome/Default/History

2013-07-15T18:29:16.382852

Page Visited

/Users/
  demouser/
    Library/
      Application Support/
        Google/
          Chrome/
            Default/History

http://kiddi.biz/

http://kiddi.biz/something.html

Source-Of

Destination

Origin



Temporal relationships also define edges

Graph for 1 minute fragment

Log events 2,544

Timestamps 147

Nodes 4,825

Edges 5,753

Large, unreadable graph, but 
temporal structure is obvious



Graph minimization merges and re-labels nodes 



Given a graph and a condition for equivalence, find smallest graph that 
preserves structure of G and merges equivalent nodes
⇒ “relative coarsest partition problem”

Area of research in automata theory and model checking, starting with 
Hopcroft’s automata minimization algorithm, 1971

Graph minimization mechanics

0

2

1

3

ab

b

a

a

a 0 1

b
a

a

(aa|b)*:

http://en.wikipedia.org/wiki/DFA_minimization


Examples of equivalence conditions

Timestamps → intervals
● All ~identical operations within a time range are collapsed to one 

node

URLs → domain name
● All visits to pages on a domain are collapsed to one node

Subgraph → operation
● Subgraphs corresponding to a high-level operation (file open, 

process exec) are collapsed to one node



Log summarization outcome



Broad spectrum of tools

● Looking for causes and effects
○ graph traversal

● Extracting meaning from noisy data
○ graph summarization
○ clustering

● Triaging malware
○ classification



Given a binary, is it malware? If so, what kind?

Non-exclusive taxonomy: “labels”, not “folders”

Why is this useful?
● Incident triage – is this malware we should care about?
● Robust hunts and scans in the presence of polymorphism

Example 3: malware classification



Malware samples, indicators, and families

Each sample is an executable. It has indicators (features) from static 
and dynamic analysis (e.g., basic block structure, registry changes, ...)

Malware in training corpus also has one or more labels (from manual 
labeling, A/V signatures, etc.) denoting its families

x x, yy



Requirements

● Make use of labeled data → supervised learning
● Classify samples by family → N-ary classification
● Non-exclusive taxonomy → samples with multiple labels
● Compare samples → meaningful metric
● Summarize important indicators → weighting of features
● Scale: thousands of families, millions of indicators



Choosing a learner

Some options and their pitfalls
● Manual signatures: don’t scale
● k-Means: unsupervised, loses valuable label information
● Logistic regression: no similarity metric between samples

Final choice: Wsabie [Weston et al., IJCAI 2011]
● “Web-scale annotation by input embedding”
● Learns an embedding model



Modeling the data

● Each sample X is a sparse N-dimensional vector (N ≈ millions)
● Each label is an integer in [1, k] (k ≈ thousands)
● Wsabie learns a projection into a low-dimensional embedding space

○ Makes the problem computationally feasible
○ Provides meaningful metric inside embedding space

P
rojection 

m
atrices

Samples
Labels

Embedded 
samples 

and labels

Wsabie learns these matrices



Learning the model

Enforce constraint:
Sim(x, y+) > Sim(x, y-) + margin

Use gradient descent to minimize loss function:
Loss = |margin - Sim(x, y+) + Sim(x, y-)|

Normalized dot product is a meaningful similarity function

Embedding space

Iterate



Once the projection matrices are learned, we can do useful things

● Compare two samples? Project into embedding space, measure 
distance

● Closest family to a sample? Project sample and all families, find 
smallest distance

● Approximate nearest sample? Filter samples by closest family

Using the model



Background

Detection

Analysis

Discussion



Summary

Many applications of data analysis to security

Without an automated signal pipeline, analysts run blind, but
● Building a pipeline with high S/N ratio is hard
● Unknown unknowns remain a concern

Interactive analysis tools are just as important as a signal pipeline
● Security monitoring as a search problem

Thank you!


